
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Technical Report 
NREL/TP-6A20-82957 
October 2022 

Exploring New Ways to Classify 
Industries for Energy Analysis 
and Modeling 

Liz Wachs,1 Colin McMillan,1 Gale Boyd,2 and Matt Doolin2 

1 National Renewable Energy Laboratory 
2 Duke University 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Technical Report 
NREL/TP-6A20-82957 
October 2022 

Exploring New Ways to Classify 
Industries for Energy Analysis 
and Modeling 

Liz Wachs,1 Colin McMillan,1 Gale Boyd,2 and Matt Doolin2 

1 National Renewable Energy Laboratory 
2 Duke University 

Suggested Citation 
Wachs, Liz, Colin McMillan, Gale Boyd, and Matt Doolin. 2022. Exploring New Ways to 
Classify Industries for Energy Analysis and Modeling. Golden, CO: National Renewable 
Energy Laboratory. NREL/TP-6A20-82957. https://www.nrel.gov/docs/fy23osti/82957.pdf.  

https://www.nrel.gov/docs/fy23osti/82957.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Advanced 
Manufacturing Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. 
Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

iii 

Acknowledgments 
This work was authored in part by the National Renewable Energy Laboratory, operated by 
Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract 
No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy 
Efficiency and Renewable Energy Advanced Manufacturing Office. The views expressed in the 
article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. 
Government retains and the publisher, by accepting the article for publication, acknowledges that 
the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish 
or reproduce the published form of this work, or allow others to do so, for U.S. Government 
purposes. 

The authors thank Anna Voss at the Association for Iron & Steel Technology for critical 
comments and insight into steel processes. We also thank Eric Stuart at the Steel Manufacturers 
Association for insight into electric arc furnace processes. We thank R. Neal Elliott at the 
American Council for an Energy-Efficient Economy for insights and resources on industry 
classification. We appreciate thoughtful reviews and comments from Alberta Carpenter, Elaine 
Hale, Jeff Logan, and Dan Bilello from NREL, Ookie Ma at the Department of Energy, and 
technical editing from Mike Meshek. Errors and omissions are the sole responsibility of the 
report authors. 

DISCLAIMER:  
Any views expressed here are those of the authors and not those of the U.S. Census Bureau. The 
U.S. Census Bureau’s Disclosure Review Board and Disclosure Avoidance Officers have 
reviewed this information product for unauthorized disclosure of confidential information and 
have approved the disclosure avoidance practices applied to this release. This research was 
performed at a Federal Statistical Research Data Center under FSRDC Project Number 2173 
(CBDRB-FY22-P2173-R9653/R9654).  



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

iv 

List of Acronyms and Abbreviations 
BF blast furnace 
BOF basic oxygen furnace 
BTU British thermal units 
CCUS carbon capture, utilization and storage 
CE Common Era 
CO2 carbon dioxide 
DRI direct reduction of iron 
EAF electric arc furnace 
EC electricity use 
ED electricity demand 
EIA U.S. Energy Information Administration 
EPA U.S. Environmental Protection Agency 
FReSMe From Residual Steel Gases to Methanol 
GHG greenhouse gas 
GHGRP Greenhouse Gas Reporting Program 
H2DRI hydrogen direct reduction  
HBI hot briquetted iron 
HYBRIT hydrogen breakthrough ironmaking technology  
IAC Industrial Assessment Center 
KDE kernel density estimate 
MECS Manufacturing Energy Consumption Survey 
MMBtu Million British thermal units 
NAICS North American Industry Classification System 
NP nondeterministic polynomial time 
PAUP Phylogenetic Analysis Using Paup 
SIC Standard Industrial Classification 
SIDERWIN development of new methodologieS for InDustrial CO2-freE steel 

pRoduction by electroWINning  
  



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

v 

Executive Summary 
Combustion, other emitting processes and fossil energy use outside the power sector have 
become urgent concerns given the United States’ commitment to achieving net-zero greenhouse 
gas emissions by 2050. Industry is an important end user of energy and relies on fossil fuels used 
directly for process heating and as feedstocks for a diverse range of applications. Fuel and energy 
use by industry is heterogeneous, meaning even a single product group can vary broadly in its 
production routes and associated energy use. In the United States, the North American Industry 
Classification System (NAICS) serves as the standard for statistical data collection and reporting. 
In turn, data based on NAICS are the foundation of most United States energy modeling. Thus, 
the effectiveness of NAICS at representing energy use is a limiting condition for current 
expansive planning to improve energy efficiency and alternatives to fossil fuels in industry. 
Facility-level data could be used to build more detail into heterogeneous sectors and thus 
supplement data from Bureau of the Census and U.S Energy Information Administration 
reporting at NAICS code levels but are scarce. This work explores alternative classification 
schemes for industry based on energy use characteristics and validates an approach to estimate 
facility-level energy use from publicly available greenhouse gas emissions data from the U.S. 
Environmental Protection Agency (EPA). The approaches in this study can facilitate 
understanding of current, as well as possible future, energy demand. 

First, current approaches to the construction of industrial taxonomies are summarized along with 
their usefulness for industrial energy modeling. Unsupervised machine learning techniques are 
then used to detect clusters in data reported from the U.S. Department of Energy’s Industrial 
Assessment Center program. Clusters of Industrial Assessment Center data show similar levels 
of correlation between energy use and explanatory variables as three-digit NAICS codes. 
Interestingly, the clusters each include a large cross section of NAICS codes, which lends 
additional support to the idea that NAICS may not be particularly suited for correlation between 
energy use and the variables studied.  Fewer clusters are needed for the same level of correlation 
as shown in NAICS codes. Initial assessment shows a reasonable level of separation using 
support vector machines with higher than 80% accuracy, so machine learning approaches may be 
promising for further analysis. The IAC data is focused on smaller and medium-sized facilities 
and is biased toward higher energy users for a given facility type.  

Cladistics, an approach for classification developed in biology, is adapted to energy and process 
characteristics of industries. Cladistics applied to industrial systems seeks to understand the 
progression of organizations and technology as a type of evolution, wherein traits are inherited 
from previous systems but evolve due to the emergence of inventions and variations and a 
selection process driven by adaptation to pressures and favorable outcomes. A cladogram is 
presented for evolutionary directions in the iron and steel sector. Cladograms are a promising 
tool for constructing scenarios and summarizing directions of sectoral innovation.  

The cladogram of iron and steel is based on the drivers of energy use in the sector. Phylogenetic 
inference is similar to machine learning approaches as it is based on a machine-led search of the 
solution space, therefore avoiding some of the subjectivity of other classification systems. Our 
prototype approach for constructing an industry cladogram is based on process characteristics 
according to the innovation framework derived from Schumpeter to capture evolution in a given 
sector. The resulting cladogram represents a snapshot in time based on detailed study of process 
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characteristics. This work could be an important tool for the design of scenarios for more 
detailed modeling. Cladograms reveal groupings of emerging or dominant processes and their 
implications in a way that may be helpful for policymakers and entrepreneurs, allowing them to 
see the larger picture, other good ideas, or competitors. Constructing a cladogram could be a 
good first step to analysis of many industries (e.g. nitrogenous fertilizer production, ethyl alcohol 
manufacturing), to understand their heterogeneity, emerging trends, and coherent groupings of 
related innovations.  

Finally, validation is performed for facility-level energy estimates from the EPA Greenhouse 
Gas Reporting Program. Facility-level data availability continues to be a major challenge for 
industrial modeling. The method outlined by (McMillan et al. 2016; McMillan and Ruth 2019) 
allows estimating of facility level energy use based on mandatory greenhouse gas reporting. The 
validation provided here is an important step for further use of this data for industrial energy 
modeling. 
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1 Grouping Industries 
Industry is the largest end-user of primary energy in the United States (EIA 2021) and it depends 
primarily on fossil fuels combusted for process heating and onsite power generation and also 
used as feedstocks for a diverse range of applications. The renewable energy transition thus far 
has relied primarily on the addition of renewable capacity to the power generation sector; the use 
of renewables in industrial processes has grown modestly in comparison. Modeling industrial 
fuel and energy use is complicated, as even a single product group can vary broadly in its 
production routes and associated energy usage (Greening, Boyd, and Roop 2007). This 
heterogeneity contributes to less exploration of energy demand models for industry than other 
end-use sectors (Verwiebe et al. 2021). Classification schemes focused on how energy is used 
could aid development of such models as industries adapt to pressures to decarbonize. In turn, 
improved models of industrial energy and fuel use could better quantify potential savings from 
new technologies and aid in understanding trends and obstacles.  
 
The industrial classification schemes that serve as the basis for data collection and reporting are at 
the foundation of energy systems models. Their effectiveness at representing energy use is a 
limiting condition for plans to improve energy efficiency and improve fuel and energy use in 
industry. Yet the classification schemes that divide the industrial sectors are not focused on energy 
use or environmental concerns. Instead, they are designed around broader categories of production 
activities that group similar types of products together and maintain consistency in production 
statistics across national borders. The challenge of relying on a classification scheme that is not 
based on energy use is compounded by limited data availability at the facility level, which 
provides a second important limitation for further development of energy systems models. 
Facility-level data could help describe heterogeneous sectors in more detail.  

This work explores alternative classification schemes for industry based on energy use 
characteristics. We look at the types of facility-level data available and study them for patterns 
that could be used to find correlations in energy use. We take a more bottom-up approach in a 
detailed look at the steel industry—an industry with important impacts not only on greenhouse 
gas emissions, but also on basic human needs for infrastructure. Right now, the two dominant 
pathways to iron and steel production, electric arc furnaces (mini-mills) and blast furnaces/basic 
oxygen furnaces, are grouped together in existing classification schemes. The processes and their 
associated energy use profiles are quite different, however. As carbon-neutral and electricity-
based production processes become introduced for the highest fuel-consuming sectors, the same 
dichotomy is likely to occur for other industries, with all activities that produce the same 
products falling under a single NAICS code despite very different energy use characteristics. We 
use a classification approach based on process characteristics to trace evolution within the steel 
industry and show different groupings that may have similar energy use profiles. Finally, we 
seek to make more facility-level fuel use estimates available via the validation of combustion 
energy use estimation methods that use publicly available data from the United States EPA 
Greenhouse Gas Reporting Program—see McMillan et al. (2016); McMillan and Ruth (2019)—
using confidential microdata at the Georgetown University Census Research Data Center. While 
each research piece is distinct, together they provide an introduction into modeling techniques 
and data that can be used to improve energy modeling for industry.  
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The next sections provide brief background on approaches traditionally used to classify industry. 
Several approaches to taxonomies and classification are surveyed with respect to their usefulness 
for industrial energy modeling. The design of the research described in this report is given in   
Figure 1 (page 2). We use unsupervised machine learning techniques to cluster facility-level data 
(Wachs and McMillan 2021) while exploring a new way of using data to derive industrial 
classification systems. This clustering approach, while different from the North American 
Industry Classification System (NAICS), is likewise a phenetic1 approach, that is, based on 
observed similarities and/or measures of similarity.  

  
Figure 1. Approaching the definition of industry archetypal models: Methods followed in this work 

The validation work is foundational to future work and analysis in this area. 
a A cladogram is a tree-like, hierarchical diagram that shows the shared evolutionary history of groups. 

Decarbonization can be thought of as an evolutionary pressure that will drive new adaptations in 
industrial systems, such as substituting new processes or fuels (e.g., blue or green ammonia, and 
power-to-X processes) for traditional fuel-based processes. An industrial taxonomy—and 
resulting archetypal mass and energy models based on phylogeny2, or evolutionary 
development—may prove more useful for capturing innovation, diffusion, and behavior under 
decarbonization policies. To test that approach, we applied an evolutionary method of 
classification (cladistics) to the iron and steel sector. We are unaware of a cladistic classification 
of industries based on their use of energy and materials.3  

 
 
1 Phenetic refers to the characteristics of an organism (biology) or entity (more broadly), regardless of the perceived 
relationship between the species sharing the characteristics. Characteristics can be shown by appearance or form 
(morphological), or may be other types of similarities that can be observed. Some of the characteristics we used in 
phenetic approaches here include number of employees, total sales and square footage. 
2 Phylogeny is a term used primarily in biology, described by Encyclopedia Britannica as: “the history of the 
evolution of a species or group, especially in reference to lines of descent and relationships among broad groups of 
organisms” (Gittleman 2016). Phylogenies represent hypotheses, as they generally rely on incomplete evidence. 
3 Baldwin’s classification of industrial ecosystems (James Scott Baldwin 2008; James S. Baldwin 2011) is similar, 
as it does include physical characteristics. 

Phylogenic 
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(cladogram
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1.1 Economic Classification 
Industrial classification systems of national and international scope have historically been 
maintained to measure economic activity. The first Standard Industrial Classification (SIC) for 
the United States was issued in 1938; it was subsumed into the NAICS in 1997. The United 
Nations issued the first International Standard Industrial Classification of All Economic 
Activities in 1949. These systems follow a hierarchical approach, grouping similar activities 
together according to a mix of production domain and materials. They have been adopted widely 
for data collection related to energy and the environment, for example in the U.S. Energy 
Information Administration’s Manufacturing Energy Consumption Survey (MECS) and the U.S. 
Environmental Protection Agency's Greenhouse Gas Reporting Program (GHGRP), which uses a 
distinct classification method4 but also records the NAICS codes.  

NAICS incorporates a supply-side approach, meaning an attempt is made to group similar 
production activities and processes in industries (Executive Office of the President Office of 
Management and Budget 2022).5 Activities are based in part on product characteristics (e.g. 
metals; plastics), but also on the type of production process (e.g. agriculture; manufacturing; 
service). Note that the activity may not reflect process details, for example wet and dry corn 
milling for ethyl alcohol production are grouped together; wet corn milling for food production 
has a separate six-digit NAICS code.6 Each physical facility is assigned a NAICS code according 
to the primary activity conducted there; for example, the headquarters of a mining company 
would be placed in the management code. This allows similar employment types to be grouped 
together. In some cases, multiple activities are performed in a single site. NAICS designations 
are then made usually based on the activity with the highest proportion of facility costs or the 
final activity in a vertically integrated process. Steel mills are an exception to this, with all 
facilities that produce steel grouped together despite downstream processing. Sometimes proxies 
such as employment or revenue rather than costs are used to make the NAICS designation. 

 
 
4 The GHGRP reporting follows a different assignment scheme than NAICS. A single facility may report emissions 
that fall into multiple categories, called subparts. For example, a single facility classified by NAICS into 325998, 
‘All Other Miscellaneous Chemical Product and Preparation Manufacturing,’ reported emissions corresponding to 
subparts C, L, N and OO: Stationary combustion, Fluorinated GHG Production, Glass Production and Non-CO2 
Industrial Gas Supply. Since the program is only relevant for large emitters of greenhouse gases, it does not have to 
present a comprehensive classification scheme. Some industries grouped together in NAICS are more finely defined, 
such as NAICS 331492 Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and 
Aluminum), whose process emissions are represented by subparts R Lead Production, T: Magnesium Production, 
GG: Zinc Production. Fossil fuel production and distribution receives particular attention, with distinctions between 
onshore and offshore production, storage, processing, transmission and other stages separated out. Hydrogen 
production and geologic sequestration of carbon dioxide also have their own subparts. Still, manufacturing besides 
petroleum refining is represented by just 24 subparts for process emissions.  
5 Supply-side means that the producers and their activities are the defining feature for the classification system. 
Product-based codes such as the International Harmonized System and the North American Product Classification 
System are considered demand-side approaches, since they define codes based on the characteristics that the end-
user. Most of the time, the supply-side approach still groups similar products together, but it is possible for the same 
product to derive from multiple NAICS codes if the production activities are different. For example, carbon dioxide 
is a co-product of several industries. Air products are made on-site at diverse manufacturing plants.  
6 Electrification of industry (i.e., production processes based on electricity instead of fuel combustion) have not 
generally been separated into different NAICS codes, as seen in the case of steel mills. Unlike steel, however, 
aluminum production is split into two NAICS codes: one for primary production from alumina (an electrolytic 
process) and one for secondary production from scrap or dross (a thermal process). 



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

4 

1.2 Biological Approaches to Classification 
In biology, systematics, or taxonomy, is the study of organisms and their relationship with each 
other, usually in terms of classification and nomenclature. Species are delineated most notably in 
terms of their ability to interbreed, but there are always some vague designations (Simons 2013). 
This vagueness refers to species that are closely connected; perhaps they are capable of 
interbreeding but seldom do, for example. Biological classification was originally performed on 
the basis of observed characteristics and their similarities (phenetics). Over time, this has been 
replaced by classification on the basis of genealogy (Simons 2013). Biological classification 
efforts can be placed into four schools (McCarthy 1995): 

1. Essentialism: Species have an essential characteristic that does not change over time. 
2. Nominalism: All individuals are different; classification is an artefact of human thought.  
3. Numerical Taxonomy/Phenetics: Statistical techniques can be used to identify 

similarities between organisms and to form groups.  
4. Cladistics/Phylogenetics: Evolutionary relationships can be used to define clades, or 

groups of organisms with a common ancestor. 
Classification is distinct from identification, which places an observed individual into a 
previously identified group (Simons 2013). A taxon can refer to any grouping in a classification, 
whether species, genus, or a more inclusive grouping, e.g.  carnivores (Simons 2013). Categories 
are groupings of taxa that inhabit the same level of the classification structure, such as all species 
or all genera (Simons 2013).  

Phylogenetic classification, which is now typically associated with cladistics, involves 
taxonomic classification based on inherited traits and evolution. Therefore, species that closely 
resemble each other might be quite distant on the phylogenetic tree if their evolutionary paths 
were distinct. Cladistics is currently the dominant method for species classification in biology. It 
was introduced by Hennig in 1950 but became well known by the moniker phylogenetic 
systematics after his publication in English (Hennig 1965). 

The concept of applying biological classification approaches to manufacturing systems was first 
explored by McCarthy (1995), as models based on appropriate, accurate and general 
classification schemes could improve understanding of manufacturing, reduce time and costs for 
modeling, and improve the applicability of model-based solutions (Baldwin 2011). McCarthy 
proposed five essential principles for manufacturing classification (McCarthy 1995):  

1. The classification must be based on key characteristics. 
2. A general classification is more important than a specialized classification for 

understanding and predicting system behavior. 
3. The classification should be parsimonious, with differentiations between systems made 

with the fewest number of taxa (a unit of classification). 
4. Taxa are arranged hierarchically. 
5. Classification should not be specific to a time period but should allow systematic analysis 

of past and future systems.  
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McCarthy determined that existing manufacturing classifications based on operational 
characteristics, operational objectives, or operational flow structure lacked objective bases for 
analyzing taxa (McCarthy 1995). Avoiding subjective classification is a primary advantage of 
cladistic classification and is a feature that distinguishes the approach from other taxonomic 
systems (Baldwin, Rose-Anderssen, and Ridgway 2012). Inspired by McCarthy’s predication, 
this work looks at two biological methods, phenetic and phylogenetic, to classify industries. 

1.2.1 Phenetic Classification 
Phenetics is based on observed features and similarities: it groups items together more closely 
when they seem similar. Before cladistics became widespread, phenetic classification schemes 
traditionally underpinned taxonomic systems. Phenetic approaches can be useful when large 
amounts of data on characteristics are available. In this work, machine learning approaches are 
used to perform clustering based on data on the relationship between energy use and facility size, 
number of employees, plant area, and hours of operation. These variables are examples of 
qualities that can be observed and recorded. Such approaches can aid in understanding 
relationships or correlations in smaller portions of a data set, or clusters, even if these clusters do 
not share the same production activity. Recently, an energy end-use taxonomy was developed to 
assist with deploying energy-efficiency measures (Kanchiralla et al. 2020). Although their work 
is hierarchical in nature, Kanchiralla et al. (2020) take a phenetic approach and characterize 
energy use based on similarities (e.g., creating separate groupings of support processes and 
production processes). Phenetic classification is typically used first to identify groups, which are 
then validated using cladistics (McCarthy et al. 1997). Given that phenetic classifications are 
much more common when describing industries, we use them, including NAICS, to initially 
guide our phylogenetic classification. 

1.2.2 Phylogenetic Classification (Cladistics) 
Although cladistics creates classification schemes, more broadly it is an attempt to understand 
systems that evolve, have ancestors, show speciation, and are subject to natural selection 
(McCarthy et al. 1997). Grouping organisms on the basis of their evolution provides insight 
into the speed, adaptations, and morphology surrounding the changes. Still, each cladogram 
represents a hypothesis about evolutionary history. In biology, cladograms are generally inferred 
from DNA sequences (Warnow 2017). Cladistics have also been adopted more broadly, 
including by linguistics (Nakhleh et al. 2005), archaeology (O’Brien, Darwent, and Lyman 2001) 
and industry (McCarthy 1995), among other disciplines. McCarthy et al. (1997) produced the 
first phylogenetic classification of industrial systems. It focused on automotive assembly 
facilities. Cladistics has also been applied in studies of manufacturing to aerospace supply chains 
(Rose‐Anderssen et al. 2009), the hand tool industry (Leseure 2000), general manufacturing 
systems (James Scott Baldwin et al. 2013), industrial ecosystems (James Scott Baldwin 2008), 
and product repair industries (Raza, Ahmad, and Khan 2018).  

A portion of the automotive manufacturing cladogram is shown in Figure 2. Each branch of the 
cladogram is numbered with the characters that are significant in species evolution. For example, 
the standardization of parts is shown as Character 1 (McCarthy et al. 1997), the single character 
that separates ancient craft systems from all subsequent craft systems. Farther down the 
evolutionary line, McCarthy et al. identify agile automation and parallel processing as the 
characters that separate agile producers from lean producers. This cladogram, as well as the other 
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industrial cladograms in the literature, is primarily driven by characters focused on 
organizational management. That is only one of the drivers of innovation, which are described 
more thoroughly in the next section.  

 
Figure 2. Example of industrial cladogram depicting the initial evolution of automotive 

assembly facilities 
Reproduced from data in McCarthy et al. 1997 

1.3 Evolution in Industry 
Though the cladograms of industries are helpful, so far, they have primarily been compiled on the 
basis of management techniques that seek to maximize production and cost efficiency. Therefore, 
they are somewhat removed from the physical nature of products, including energy use. Although 
they have been useful in understanding the human behavior behind the evolution of industries, 
technological change and innovation within particular industries is frequently tied to the products 
themselves.  

Still, cladistics is a flexible technique. Its use for archeological phylogenies (O’Brien, Darwent, 
and Lyman 2001) does rely on physical characteristics of artifacts. This is somewhat closer to the 
approach taken in this study, which focuses on physical characteristics of products and 
processes. Schumpeter’s classic paradigm perceives innovations in products or production 
processes, or in markets or supply, or in management or organization, as the key drivers of 
economic development (Schumpeter and Elliott 2012). Specifically, Schumpeter describes new 
products, new production methods, new markets, new supply sources, and new organizations 
(Schumpeter and Elliott 2012). Thus, technological breakthroughs can offer opportunities to 
firms that can use them to create new products or who adopt them into their processes to make 
them more efficient. These breakthroughs can also offer new markets for processes that now 
require different ingredients, or allow existing processes to switch suppliers.  
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Table 1 lists examples of drivers of progress in the renewable transition space. Products act as 
drivers of progress, either as results of a more climate-friendly manufacturing process or as 
enablers of a more climate-friendly manufacturing process in other sectors.  Production methods 
examined in the climate change space tend to be targeted toward (1) adjustment of a process to 
allow flexibility or use of alternative fuels, (2) carbon capture or other emissions savings, and (3) 
circular economy, including recycling and remanufacturing. Markets may be new consumers for 
existing products, for example wind turbine manufacturing as a market for steel products, or 
market segments such as firms that are specifically interested in purchasing lower-carbon 
intermediates; or, they may be able to benefit from changes in the final product that result when a 
traditional production method is altered (e.g., hot briquetted iron [HBI] is a final product from 
direct reduction of iron that differs from pig iron, the product from blast furnace production).  

Supply sources offer opportunities as well; for example, in some energy-intensive industries, the 
supply of renewables may provide impetus for innovation, particularly considering the different 
risk profiles of renewables and conventional fuels. Organizational structures such as vertical 
integration can offer opportunities as well, for example by diversifying risk profiles in the asset 
portfolio.  

Table 1. Drivers of Innovation Applied to Renewable Energy Transition 

Drivers of Progress Examples 

Products Green chemistry products, carbon credits, renewable tax credits, upcycled 
products, green fuels, biobased products 

Production methods CCUS, recycling/remanufacturing, electrification, power-to-X, use of alternative 
fuel or feedstock 

Markets Green power market associations, market for green products, market for 
lower-carbon products (can be driven by certifications and incentives) 

Supply sources Electricity from renewables, green hydrogen, alternative fuels 

Organization 
structures 

Vertical integration that allows different risk profile due to contracts with 
renewable generation 

Schumpeter’s framework is agnostic as to external forces leading to change, placing the system 
boundary around the firms in a particular sector. Still, in the case of technological changes 
related to the energy transition, firms and even industries do not act totally independently. 
Instead, they are part of a “technological regime,” which also encompasses other actors, 
practices, institutions and infrastructures (Rip and Kemp 1998). Smith, Stirling, and Berkhout 
(2005) examined regime changes in the context of three factors: (1) the description of the change 
as being oriented toward a particular problem or goal, (2) resource availability7 for the 
incumbent regime, and (3) coordination of responses (adaptive capacity). They devised a 
conceptual framework classifying regime changes into those with high external coordination of 
the adaptive response and external resources for adaptation (“purposive transitions”), high 
external coordination of adaptive response and internal resources for adaptation (“endogenous 

 
 
7 Resource availability or “environmental munificence” refers to the level of economic interest in the area; research 
funds, investment funds, access to capital, high prices for produced goods, good salaries versus a more resource-
constrained environment. 
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renewal”), low coordination of adaptive response and internal resources for adaptation 
(“reorientation of trajectories”), and low coordination of adaptive response with external 
resources for adaptation (“emergent transformation”). Smith, Stirling and Berkhout classified the 
renewable energy transition into the first category, of a purposive transition (2005).  

Climate change is the overriding concern motivating the renewable energy transition, which 
means levels of greenhouse gas (GHG) avoidance and time frames are subject to a high level of 
coordination, with pressure for adaptation coming outside individual regimes such as the energy 
regime or metals production regime. Therefore, unlike a technological change such as the 
adoption of combined-cycle gas turbines for power production, which came from technological 
changes developed as a response to many different challenges and were not coordinated within 
the sector—and so was not possible to predict—some characteristics of the changes taking place 
because of the renewable energy transition may be predictable, even if their exact form may be 
unknown. 

Cladistics may provide a method of understanding the relationship of industrial development to 
the evolutionary pressures applied by the renewable energy transition. Specifically, cladistics can 
track how industries have begun to innovate and change in this period. The cladogram provides a 
visual map of the emerging evolution at a snapshot in time. It is easily possible to see where 
most branching is occurring and what types of processes are emerging. Comparisons of 
processes and their impacts in different branches of the cladogram can provide insight into how 
much GHG emissions could be curbed, which synergies with other industries may be likely, and 
which types of solutions are being actively developed (e.g., whether green fuels, electrification 
or carbon capture, utilization and storage [CCUS] is most prominent).  

As mentioned previously, much of the work in cladistics for industrial classification has been 
focused on a single category: organizational structures. We choose a case study of the iron and 
steel industry to explore and demonstrate the applicability of cladistics to industrial classification 
in the renewable transition space. Rather than focusing on organizational structure, we broaden 
the classification approach to encompass all five drivers of innovation. 

1.4 Data Needs for Classification 
Any novel classification approach needs to be supported by data, particularly at the facility level 
so that conclusions are not confined to the current classification scheme. Until recently, the only 
publicly available source of U.S. facility-level energy data was the database of the Industrial 
Assessment Centers (IACs) sponsored by the U.S. Department of Energy (“Industrial 
Assessment Centers” n.d.). The IAC is a program whereby small and medium firms can apply 
to receive energy and waste audits and recommendations for energy savings, production issue 
diagnoses, information on opportunities for smart manufacturing, and cybersecurity 
enhancements. The centers are hosted at universities, providing an opportunity for students to 
gain practical experience. The facilities that participate must release anonymized information 
about their energy and water use as well as their location and industrial classification. The IAC 
program has worked on close to 20,000 facilities since its beginning in 1976.  

Approximately 8,000 U.S. facilities are required to report annual GHG emissions under the GHG 
reporting rule (Mandatory Greenhouse Gas Reporting 2009). The rule applies to facilities that 
emit at least 25,000 t/year of CO2 equivalent emissions of greenhouse gases, including carbon 
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dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and 
select fluorinated gases such as nitrogen trifluoride and hydrofluorinated ethers. The EPA 
classifies the facilities into sectors that include power plants, mining and waste, and sectors that 
mostly include manufacturing, such as miscellaneous combustion (which also includes service 
industries), refineries, chemicals, metals, minerals, pulp and paper, and electronics 
manufacturing. A technique has been established to use emissions data reported under the 
GHGRP to estimate fuel use by facility (McMillan et al. 2016; McMillan and Ruth 2019). Still, 
the approach has not been validated, which has limited its use. 

The MECS is currently performed every 4 years to record detailed information about 
manufacturing energy use, including consumption, costs, cogeneration, use of waste heat, and 
fuel-switching ability (“2014 Manufacturing Energy Consumption Survey Methodology and Data 
Quality: Survey Design, Implementation, and Estimates” n.d.). The data are processed and 
released to provide information on geographic and sectoral patterns while maintaining the 
confidentiality of the businesses surveyed. The facility-level data are not publicly available, but 
researchers with Sworn Special Status can apply to access it for approved projects inside secure 
U.S. Census Bureau research data centers, which we did for this work. 
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2 Statistical Classification 
In this section, we examine available data on facility level energy use to find groups with 
particularly high correlations between energy use and other, observable characteristics. Ideally, 
such a grouping could represent an “archetype” to be studied further and used as a basis for more 
detailed energy models. The data set used is described in Section 2.1. Statistical approaches are 
used to understand the data and measure correlations based on existing classification schemes 
(Section 2.2). Then, in Section 2.3 unsupervised machine learning approaches are used to detect 
groupings from the data itself.8 Because classification approaches represent a black-box type 
technique, where it is not immediately clear how the differentiation is made, an additional step of 
applying support vector machines, which quantify how easy it is to separate the resulting 
clusters, was also used in Section 2.4. The results of this work are explored in Section 2.5. 

2.1 Description of the Data Set 
We initially attempted to identify an evidence-based industrial classification by examining the 
IAC database using both unsupervised and supervised machine learning techniques to see 
whether meaningful clusters could be detected based on energy use; see also (Wachs and 
McMillan 2021). When these experiments were run, the IAC data set included 19,435 records 
reflecting operations as far back as the 1970s. A total of 5,027 records for 2010–2021 were used 
for this analysis. To give a sense of the relative numbers of industrial facilities participating in 
the IAC program, between 2010 and 2020 the IAC covered approximately 0.10–0.15% of 
manufacturing establishments each year (Wachs and McMillan 2021). The Bureau of Labor 
Statistics show 12,231,000 employees in manufacturing in December 2020. The IAC data set 
included 63,923 employees in 2020, or 0.5%. 

Although the manual for the IAC database states that facilities should have fewer than 500 
employees (Muller 2011), 239 facilities reported having a higher number. The largest number of 
employees for a facility in the data set was 6,500, and the average number was 177 employees. 
And the manual states that the energy bills should be between $100,000/annum and 
$2,500,000/annum, but the data set includes energy bill values ranging from $85 to more than 
$88,000,000. The facilities are also not evenly divided between manufacturing NAICS codes. 
More than half are from the following five three-digit codes: 311 (Food Processing, ~12%), 
325 (Chemical Manufacturing, ~7%), 326 (Plastics and Rubber Products Manufacturing, ~10%), 
332 (Fabricated Metal Manufacturing, ~13%), and 333 (Machinery Manufacturing, ~8%). The 
portion of facilities in Code 221 (Utilities) has been increasing in recent years.  

The descriptive data for each facility includes NAICS or SIC codes, plant area, sales, hours, 
production (mass or volume), state, product or products, and number of employees. Twelve types 
of energy use are recorded in monetary and energy units. Water consumption and disposal, and 
liquid, solid and gas disposal are also recorded in monetary and physical units. Still, most fields 
are sparsely populated. Therefore, we summed all fuel use types in their energy units to make a 
total fuel use variable. Electricity usage and demand were well populated. Production in mass 

 
 
8 Bzdok, Altman and Krzywinski summarized the difference between statistics and machine learning thus: 
“Statistics draws population inferences from a sample, and machine learning finds generalizable predictive 
patterns.(Bzdok, Altman, and Krzywinski 2018)” 
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and volumetric units were not comparable, so were not considered. The products field, which is a 
qualitative field, was not used. The final set of variables used for our analysis included electricity 
use, electricity demand, total combustion fuel use, production hours, number of employees, plant 
area, and sales.  

Preprocessing was performed on the data set. Duplicate records were removed. Then, we 
checked for NAICS codes outside the range denoting manufacturing (two-digit prefixes between 
31-33) and examined the data for these facilities manually. Three facilities with NAICS codes 
above 339 were reclassified based on this inspection, and all others except facilities in NAICS 
code 562 (waste disposal) were excluded from the analysis. Facilities with NAICS codes below 
311 were included (representing sectors 11, 21, 22 and 23); most facilities with these codes were 
wastewater treatment or water distribution with some in the categories of construction, pipes, and 
agriculture. The annual average U.S. Bureau of Labor Statistics’ Producer Price Index was used 
to adjust all sales figures to 2019 figures, according to the following equation: 

𝑆𝑆𝐴𝐴 = 𝑆𝑆 ×  
𝑃𝑃𝑃𝑃𝑃𝑃2019
𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 

where SA is adjusted sales (used in the analysis), and S is the total sales figure from the data.  

Because a high level of skew was found in the data set, transformations were applied (a normal 
distribution is assumed for clustering methods); a log transform was used on electricity demand 
and consumption and the Box-Cox transformation was used on all other variables except hours 
(log transform was not sufficient to remove skew in most of the variables). The StandardScaler 
function (Pedregosa et al. 2011) was applied to transform each variable to give a mean of zero and 
a variance of one. Outliers were detected and values more than 2.5 times the interquartile range 
were removed to avoid their effects dominating the clustering. The final data set included 4,248 
observations. 

The analysis then proceeded as follows: 

1) Initial Preprocessing of Data: Duplicates removed. NAICS codes outside 11, 21, 22, 
23, 31–33, and 562 reclassified or removed. Box-Cox and log transformations applied. 
StandardScaler function applied. Outliers detected and removed. 

2) Supervised Approach: Using NAICS codes as clusters, Pearson correlation between 
variable pairs run and visualized. This is described in Section 2.2. 

3) Unsupervised Approach: Ratios of energy to predictor variables calculated. K-means 
clustering performed for a range of k (number of clusters) values. Hierarchical clustering 
run, visualized, and analyzed. This is described in Section 2.3. 

4) Application of Support Vector Machines to 20 Hierarchical Clusters: This is 
described in Section 2.4. 



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

12 

2.2 Supervised Learning Approach: Pearson Correlation between 
NAICS and Energy Use Variables 

In the first step, we measured the Pearson correlation between the three energy use variables and 
the predictor variables: production hours, number of employees, plant area and sales, within each 
NAICS code. This was done to create a baseline to which the unsupervised clustering approaches 
could be compared. The heat maps in Figure 3 provide a visual clue about how the different 
variables are correlated according to NAICS groupings. First, it is evident that many of the 
variables are sparsely populated. No strong correlations seem evident for any of the fuel streams 
or material waste streams. Electricity consumption and electricity demand rarely show strong 
correlations with any of the variables, although the number of employees and plant area do show 
a correlation in some NAICS codes.  

  

  
Figure 3. Pearson correlations between number of employees (Emp), plant area (Are), plant hours 

(Hou), and annual sales (Sal) and each of the energy consumption variables is shown for every 
three-digit NAICS code 

Blank spaces indicate insufficient observations (<20) for correlation calculation. 

EC is electricity use (in energy units). ED is electricity demand (in power units). E2 is natural gas, E3 is coal, and 
E4-E12 are other fuel types. W0-W6 represent waste streams. Tot_Co is the sum of all fuel consumption and Tot_En 

is the total energy including fuel and electricity. 



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

13 

2.3 Unsupervised Learning: Clustering 
We calculated ratios of each predictor to each response pair, and we used these as the data set for 
unsupervised clustering. Unsupervised learning allows patterns and groupings to be found from 
the data set without making assumptions about independent and dependent variables. Clustering, 
a search for these groupings, is the most common unsupervised approach, and hierarchical and k-
means are two prevalent clustering techniques. Hierarchical clustering begins with the 
assumption that every observation represents a single cluster. In each step, the distance between 
every pair of clusters is computed and the lowest score below a particular criterion results in 
those clusters joining to form a new cluster. Once all the clusters have been joined into one, the 
algorithm stops. For this work, the scipy Python library was used with the Ward distance metric 
(Virtanen et al. 2020). The resulting dendrogram is shown in Figure 4. At the base of the 
dendrogram, each observation is represented by a single node. The vertical distance in a 
dendrogram shows how closely related the clusters shown are. At any point on the y-axis, a 
horizontal cut shows how many clusters are similarly closely related. This dendrogram seems to 
show a natural categorization of the data into three main groups, which are differently colored in 
Figure 4. Clear distinctions are still visible in almost 50 clusters.  

 
Figure 4. Dendrogram of hierarchical clusters formed on the IAC data set 

The second clustering approach is the k-means algorithm. The k stands for the user-defined 
number of clusters. In the first step, k centroids are randomly assigned over the state space. Each 
observation is then assigned to the nearest centroid. Centroids are recalculated again on the basis 
of the assigned datapoints. Once the centroid locations do not change, the algorithm is stopped. 
For this work, 25 repetitions were completed with a random seed of 42. The algorithm was run 
for 1–100 clusters. The scikit-learn Python package was used (Pedregosa et al. 2011). Because 
results were better for hierarchical clustering, k-means results are not discussed here. 

2.4 Supervised Approach: Support Vector Machines 
Once clusters have been designated, it is necessary to delineate their boundaries in the state space 
so that new observations can be assigned to the correct cluster. This is done by classification. We 
used support vector machines for this step. Building on the concept of a maximal margin 
classifier, which is a linear approach of classification between two classes via a hyperplane that 
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leaves the maximal margin between the classes, support vector classifiers efficiently separate 
clusters allowing a soft margin, which can be trespassed when linear separation is not possible. 
Support vector machines extend this capability to cases where linear separation is less effective 
than other types of functions, allowing a kernel function to be used (James et al. 2021).  

The scikit-learn Python package extends the capability from two classes to multiple classes via a 
one-versus-rest implementation9 (Pedregosa et al. 2011). In addition, because support vector 
machines require a kernel function, as well as parameters C (how soft the boundaries are, the 
number corresponds to the number of observations that can be misclassified), and gamma (in the 
case of the radial basis function), to be determined, they are found using an exhaustive search via 
cross validation. While support vector machines are deterministic once the parameters have been 
set, the division of the data into training and test sets is stochastic, so a random seed of 101 was 
used. 

2.5 What Facilities are in a Cluster? 
When allowing machine learning classification of facilities according to characteristics of their 
energy use, it was unclear to what degree the results would mimic the facilities’ original NAICS 
classification. So, we conducted additional analysis of the resulting clusters to understand their 
size, relationships to predictor variables, and industry compositions. Figure 5 shows the 
correlations between predictor variables when a cutoff of 20 clusters was selected. Correlations 
appear to be high, with all clusters except 16 and 19 showing a moderately high correlation 
between at least one pair of energy use and predictor variable. This is a smaller cutoff than the 26 
three-digit NAICS codes present in the data. Thus, groupings could be made using this approach 
that demonstrate moderate to high correlations between electricity and other characteristics using 
a resolution even rougher than the three-digit NAICS codes. Different clusters show different 
relationships, with some showing a higher correlation between sales figures and electricity, with 
others showing a higher correlation between number of employees or plant area and electricity. 
So, these groupings could allow modeling electricity use based on the given characteristics.  

 
 
9 Support vector machines are a binary classification system, so can divide between just two classes. In order to 
extend their functionality to larger systems, support vectors can be sought that separate between every two clusters 
(one versus one), or between each single cluster and the rest of the observations (one versus rest), or the problem can 
be formulated in a way that allows all the vectors to be constructed such as via directed acyclic graph methods.  
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Figure 5. Pearson correlation between pairs of variables visualized on a heat map for 

20 hierarchical clusters 
Dark blue indicates highest correlation while the yellow color family indicates negative correlation. 

All but two clusters show moderate to high correlation between at least one variable pair. 

Individual clusters are not dominated by any particular NAICS code, whether at the six or three-
digit level. This can be seen in Figure 6, which shows clusters colored by percentage of their 
total members from a particular NAICS code. The clusters are fairly robust, as support vector 
machines can distinguish between them with 83%–88% accuracy. Every cluster contains at least 
five corresponding light yellow squares, including the clusters with lowest membership: 16, 18 
and 19, which are all very low in fuel consumption and fairly high in sales. Cluster 16 has very 
low operating hours and spans the plant area distribution with high variance. Likewise, NAICS 
codes which contribute substantially to a single cluster, such as 221, 311, 326 and 332, 
contribute at a similar level to many clusters. NAICS codes that are present only in 1–3 clusters 
are only found in 1–3 observations. Taken together, this indicates NAICS codes do not 
distinguish between characteristics that predict cluster differentiation. Nevertheless, in some 
cases, firms in specific NAICS codes fall heavily into certain clusters. At the three-digit level, 
just those with fewer than three entries are found to be above 30% in any particular cluster (with 
the exception of NAICS 562 Waste Management and Remediation Services in the hierarchical 
clustering, which has a total of eight entries).  
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Figure 6. Percentage of total members of cluster (y-axis) pertaining to single three-digit 

NAICS code (x-axis) 
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Figure 7 shows the number of observations in each cluster. The number of facilities in each 
cluster found by the hierarchical method ranges from 37 to 454, with a median of 199. 

 
Figure 7. Number of facilities in each cluster 

Section 3 focuses on a more mechanistic view of understanding these correlations. Though 
the phenetic classification approach via machine learning shows promise in better identifying 
correlations between energy use and facility characteristics, it cannot provide insight on process 
pathways and causes. The characteristics that are observable are artifacts of the manufacturing 
processes used, and a change in the process may change both the predictor and energy use 
variables. For a better understanding of processes as well as the changes occurring at the industry 
level, a complementary approach is needed. 
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3 Cladistics for Industry 
Industrial cladistics is an example of phylogenetic classification, which seeks to trace the 
evolution of systems, specifically focused on the branching points (i.e., where different 
characteristics emerge) (Rose-Anderssen 2014). Thus, it involves denoting manufacturing 
“species,” which is a somewhat subjective process, and tracing their evolution via branching 
points. This is done by labeling characters (traits) and finding the most parsimonious route 
of adaptation. Though cladistics has been applied broadly to manufacturing, most of the work 
on industrial classification relates primarily to organizational systematics. In this work, the 
conceptualization is expanded to include industry more generally. 

A method for constructing manufacturing cladograms was suggested by McCarthy et al. (1997) 
and amended by McCarthy and Ridgway (2000) and Rose-Anderssen (2014). We followed a 
similar set of steps, given below: 

1. Define the problem (i.e., why the cladogram is being constructed and what purpose it 
should serve). 

2. Identify the “clade” of interest (i.e., the group of manufacturing systems to study).  
3. Identify the “taxa.” A taxon is a grouping such as a species or family that forms a distinct 

unit. For manufacturing systems, this can be an idealized type, or could reflect particular 
facilities. The study author must define the taxa.  

4. Identify characters, the characteristics of the manufacturing process; these are assumed to 
be variables with evolutionary significance and are used for classification. 

5. Code the characters: construct a character matrix including all the taxa identified in step 2 
as well as all characters from step 3. Assign scores for each taxon for each of the characters 
(e.g., a binary score, 0 means character is absent, 1 means it is present.) 

6. Construct a conceptual cladogram (discussed in detail in Section 3.1). 
7. Construct a “factual” cladogram (i.e., validate the conceptual cladogram through site visits 

and interviews). 
8. Establish a nomenclature. 

This approach is applied to construct a cladogram for the iron and steel industry in Section 3.2. 
The resulting cladogram is presented and discussed in Section 3.3. 

3.1 Constructing a Cladogram 
Phylogenetic trees, also called cladograms, must be inferred after taxa and characters have been 
defined. A phylogenetic tree consists of any network with connections between all the taxa that 
uses all the characters. Many trees are possible, so different theoretical approaches are used for 
tree construction and selection. Maximum parsimony is one such approach. It assumes that the 
most optimal tree is the one with the minimum character changes. Parsimony is therefore easy to 
understand, and was one of the first and most widespread principles for phylogenetic tree 
construction (Felsenstein 2004). This is the approach we used, for its simplicity and the 
availability of software tools that could allow us to perform the analysis. Multiple other 
approaches are possible (see Felsenstein 2004; Warnow 2017; Schrago, Aguiar, and Mello 2018 
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for full discussion). Any tree, or cladogram, is ultimately a hypothesis. The question of which 
tree is most accurate (that is the tree derived with fewest evolutionary steps, versus trees derived 
or chosen based on some of the other available criteria) has implications in terms of philosophy 
as well as science, statistics, and in this case, industry. We cannot usually assess directly how 
evolution occurs, although in the case of industry we may have enough sources to perform some 
validation. Validation is a suggested step in the method devised by McCarthy et al. (1997), but 
does not seem to have been implemented. We could not perform validation due to the limited 
scope of this work, but it is an important exercise to undertake as industrial cladogram 
methodologies develop. 

Maximum parsimony is a version of the Hamming Distance Steiner Tree Problem (Warnow 
2017). It is one of the classic NP-complete10 problems in combinatorics (Karp 1972), requiring 
an exhaustive search of the solution space; thus, the optimization version is NP hard. The 
number of tree possibilities begins to increase rapidly once more than two taxa have been 
identified. Methods that include exhaustive search can be tractable with fewer than 11 taxa, but 
larger numbers of taxa are typically approached by branch and bound algorithms and heuristic 
approaches for larger numbers (David L. Swofford and Jack Sullivan 2003). For this work, 
Phylogenetic Analysis Using Parsimony (PAUP*) software (Swofford 2003) was used with the 
maximum parsimony approach.11 

3.2 Iron and Steel Cladogram 
Iron and steel are closely related materials. Iron is the most abundant element on Earth by mass 
(Frey and Reed 2012), but like many metals it reacts easily with oxygen. Therefore, naturally 
occurring iron is usually found in an oxidized state as hematite (Fe2O3), magnetite (Fe3O4) or 
other ores. To obtain metallic iron, the oxygen must be removed by a reduction process. Due to 
its properties of strength and robustness and its ubiquity, iron has been used extensively for the 
fabrication of tools and weaponry for at least 4,000 years (Gale 1990). Since the discovery of 
iron in Middle Eastern cultures, the use of iron made its way throughout the world. As its 
production became widespread, it was refined in bloomeries, small-scale production facilities 
consisting of a clay oven powered by charcoal to heat iron ore, which was manipulated via 
bellows and tongs into wrought iron. The bloomery technology was remarkably consistent, 
undergoing little essential change during an approximately 3,000-year period, until roughly 1500 

 
 
10 NP is nondeterministic polynomial time. 
11 Cladograms are usually prepared in biology, and while they can employ morphological (descriptive, structural) 
characters such as those used in this work, molecular evidence such as DNA or amino acids are frequently used. 
Most software is designed to handle molecular evidence, and fewer are available for morphological data. When 
cladistics was first applied to industrial systems in the late 1990’s, available software frequently included 
morphological characters and utilized the parsimony approach. Subsequent developments have focused more on 
support for molecular evidence and some of the newer approaches such as maximum likelihood model. The open 
source implementations MacClade and Mesquite no longer support phylogenetic tree inference. The maximum 
likelihood model has been extended to cover discrete morphological data, but it has not been implemented in 
Biopython, although it is available in MrBayes (Schrago, Aguiar, and Mello 2018). The Willi Hennig Society 
supports an implementation of the parsimony approach that applies to discrete and continuous alphanumeric 
characters in a free software called tnt, which stands for Tree Analysis Using New Technology. DendroPy allows 
use of the Phylogenetic Analysis Using Paup (PAUP*) module, which includes treatment of morphological 
characters, but the version of PAUP that includes an interface that is no longer supported on Mac (Mac OS X 
10.15+). 
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CE, with the advent of the blast furnace in Europe. The blast furnace is still used today, although 
at a larger scale than first employed, and powered by coke rather than charcoal.  

In combination with a small amount of carbon and also with other alloying elements, iron’s 
properties can be even more useful. The most famous and important of these alloys is steel, an 
alloy of iron and carbon that can include other elements as well (stainless steel includes 
approximately 18% chromium by mass). Mass production of steel became feasible in the second 
half of the 19th century with the Bessemer process, which was supplanted by open hearth 
processing, but is now generally done in a basic oxygen furnace (BOF). Currently, iron and steel 
production is dominated by China, which makes more than half the world’s steel (“2021 World 
Steel in Figures” 2021).  

In the dominant pathway to produce steel today, iron ore is mined, reduced with coke in a blast 
furnace (BF) into pig iron, blasted with oxygen to remove impurities including carbon to form 
steel in a BOF, alloyed in a ladle to meet product specifications, cast into intermediate products, 
and then fabricated into final products. The electric arc furnace (EAF) presents a smaller-scale, 
more modular alternative, which primarily uses steel scrap (scrap usually forms 100% of the feed 
in the United States, although it is possible to use ore-based metallic iron in the feed as well) 
directly to form new steel. In the United States, scrap-based steel production in the EAF is 
currently the dominant pathway for steel production (Tuck 2021). Still, since most steel products 
consumed in the United States derive from imports, the domestic use of steel is far from circular 
(Cooper et al. 2020).  

The carbon intensity of the two steelmaking processes is quite different, with estimates of 
national average intensities for the BF-BOF process, which uses coal directly, ranging between 
>1.5 t CO2/t crude steel and just below 3 t CO2/t crude steel (Hasanbeigi 2022), with many 
estimates being close to the global average of 1.81–1.89 t CO2/t crude steel cast (worldsteel 
Association n.d.). The carbon intensity of the EAF, when it avoids the ironmaking step, is 
estimated to be much lower, from around 0.3 t CO2/t crude steel to 0.9 t CO2/t crude steel, with 
emissions depending largely on the composition of the power grid (Hasanbeigi 2022), although 
oxygen is typically injected into the furnace to take advantage of chemical energy, which also 
produces emissions.  

There has been increased investment and interest in green technologies in the iron and 
steelmaking sector in recent years. New technologies under development cut energy use, replace 
the raw materials required, and decrease direct emissions and indirect emissions from the value 
chain. For example, in the European Union, the Clean Steel Partnership Roadmap (ESTEP 
2020), which includes plans to fund the steel sector with €2 billion between 2021 and 2027 to 
reduce GHG emissions via the development and proving of new technologies, received approval 
for €0.7 billion of public funds and €1 billion of private funding (Eurofer 2021). In the United 
States, the private sector has provided some funding in this direction, with Boston Metal raising 
more than $60 million of venture capital (Forster 2021). Though this is much less than the public 
investment Europe is making in the sector, European steel production is more carbon-intensive 
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than U.S. steel production12. And concerns about climate change have already led California to 
publish carbon caps for four steel materials (hot-rolled sections, hollow structural sections, plate, 
and rebar, or concrete reinforcing steel), which went into place in July 2022 (“Buy Clean 
California Act” n.d.). 

Dominant and emerging pathways to steel production are shown in Figure 8 (page 22), which 
can be read from left to right. The first steps in steel production, shown at the far-left side of the 
figure, entail raw material extraction and beneficiation. Raw materials shown are scrap, lime, 
coal, iron ore, natural gas, and water. All these except scrap and water involve a related 
extraction process. Emerging processes have been developed to require less processing. For 
example, HIsarna and Boston Metal avoid preprocessing of iron ore into agglomerates, as well as 
the use of coke (although coal is still required) for the production of pig iron (like blast furnace 
or direct reduction steps) (TATA Steel 2020). In the case of hydrogen direct reduction H2DRI, as 
exemplified in the hydrogen breakthrough ironmaking technology (HYBRIT) process (SSAB 
n.d.), hydrogen is used as the reducing agent, and, as the technology is designed to be fossil free, 
is prepared via the electrolysis of water. 

For ironmaking, the BF runs on coal (coke) for the energy-intensive and high-CO2-emitting 
reduction of iron ore to produce pig iron. Much research on alternative ironmaking techniques 
has been taking place due to this stage’s responsibility for the largest share of CO2 emissions. 
The eventual buildup of copper in scrap and limitations on scrap availability make some 
production from ore necessary assuming demand for steel remains constant or increases. Five 
additional ironmaking processes are shown in Figure 8. As the price of natural gas in the United 
States has decreased, the direct reduction of iron (DRI) using natural gas (Midrex and other 
processes) has begun to gain traction, roughly doubling from ~8% in 2016 to ~16% in 2020 
(USGS 2022). DRI avoids the use of coke, and the hot briquetted iron (HBI) or sponge iron 
produced can be used in either a vertically integrated mill or an EAF. 

Interest has been growing in the use of hydrogen gas (H2) produced by electrolysis of water 
using renewables as the sole reducing agent for iron ore (H2DRI) (SSAB n.d.; Bailera et al. 
2021). Note that it is also possible to use a combination of electrolytic hydrogen and natural gas, 
but this method is not included in our cladogram development. Electrolytic reduction of iron is 
being developed in at least two distinct processes: 

• Boston Metal, is a modular, high-temperature process for molten electrolysis that can use 
iron ore fines (“Boston Metal” n.d.; Boston Metal 2019). 

• The development of new methodologieS for InDustrial CO2-freE steel pRoduction by 
electroWINning (Siderwin), is an electrolytic process for recovery of iron in alkaline solution 
at lower temperatures (~110 °C) followed by the use of induction heating for the production 
of steel or an EAF that does not require lime inputs (Tecnalia n.d.). 

In addition to these two processes, Parkinson et al. (2017) suggest a molten salt electrolysis 
process that could be coupled with chemicals production (e.g., ethylene, benzene) for CO2-free 

 
 
12 While Hasanbeigi does not provide numerical estimates, interpolation from Figure 7 (Hasanbeigi 2022) shows a 
carbon intensity of roughly 1.25 t CO2/t crude steel for the EU-27 countries versus slightly lower than 1 t CO2/t 
crude steel for US steel production  



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

22 

ironmaking13 in a process referred to here as power-to-iron/organic chemical production. 
Smelting reduction is an alternative to DRI, which operates at a higher temperature but needs 
less refining of inputs. The only process included that uses smelting reduction is the SuSteel 
process, in which hydrogen plasma serves as the reducing agent, allowing ironmaking with no 
CO2 emissions (Seftejani et al. 2020; K1-Met GmbH 2022). 

Just two steelmaking processes are included in our cladogram: the EAF and BOF. Most 
emerging ironmaking technologies have been designed to work with one of these two existing 
processes, although sometimes with minor modifications that are not discussed here (note that 
the power-to-iron/organic chemical production process does not mention a particular steelmaking 
process). Produced steel is then cast. Nucor has invested in a process called Castrip that casts 
EAF steel directly into thin sheets, but all the other processes involve the preliminary casting 
stage before moving to steel products fabrication.  

Other processes included in some of the pathways are carbon capture, utilization and storage; 
methanol; and other chemicals. The From Residual Steel Gases to Methanol (fReSMe) project 
constructed a pilot plant in Sweden that allows the production of methanol suitable for use as 
shipping fuel from residual blast furnace gases  (“From Residual Steel Gases to Methanol” 
2021), which have undergone the water gas shift reaction to have higher CO2 and H2 content 
(Bonalumi et al. 2018). The Carbon2Chem project in Germany also uses coke oven gases and 
blast furnace gases to produce base chemicals for fertilizer, plastic, and fuel production via an 
industry coordination approach, with the aim of eliminating all CO2 emissions from iron and 
steelmaking (Deerberg, Oles, and Schlögl 2018), although because fuels such as methanol would 
be produced, their combustion would still produce emissions. The eForFuel project, which seeks 
to make fuels from CO2 via biotechnology and electricity, uses blast furnace gases as an 
important feedstock (Bar-Even, Keller, and Rettenmaier 2021). 

 
Figure 8. Process pathways for steel production 

 
 
13 Natural gas is used as a feedstock for chemical production in this process.  
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The definition of taxa can be ambiguous even in biology. For industry, various units could be 
considered taxa, for example: 

• Individual industrial plants 
• Individual production units in a single plant 
• Types of production processes 
• Idealized production processes 
• Companies 
• Products 
• Industries. 
We used the following idealized production processes as the taxa used for the cladogram 
construction: 

• BF - BOF 
• BF - BOF - CCUS 
• Scrap - EAF 
• DRI & BF - BOF 
• DRI & Scrap - EAF 
• SIDERWIN 
• H2DRI 
• Boston Metal 
• HIsarna 
• Nucor Castrip 
• SuSteel (Power to Hydrogen) 
• Power-to-iron/organic chemical production 
• power to methanol - Carbon2Chem 
• power to methanol - FReSMe 
• eForFuel 

3.2.1 Derivation of the Character Matrix 
External pressure and coordinated resources toward combating climate change have assisted in 
the development of new ironmaking processes and steelmaking improvements that may 
eventually replace current processes, even though the particular process mixture is not yet clear.  

Such external pressure—from either a broad energy transition or a more narrow push in a 
particular state to avoid climate change—is acting on many industrial sectors and providing 
impetus for innovation. Drivers of innovation (Schumpeter and Elliott 2012) as applied to the 
case of the renewable energy transition in the iron and steel sector are shown in Table 2. 
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Table 2. Drivers of Innovation in the Iron and Steel Sector 
These are used to derive potential characters for phylogenetic classification. 

Category of Drivers Examples 

Products • HBI 
• Zinc (coproduct in HYBRIT) 
• Coproduct methanol and other chemicals 
• Byproduct gases to methane 

Production methods • High-temperature BF to BOF 
• EAF 
• CCUS (reduce CO2 emissions) 
• increasing proportion of EAF & scrap reuse 
• Scrap in BOF 
• H2DRI (e.g., HYBRIT) 
• Electrowinning at low temperatures (SIDERWIN) 
• Molten electrolysis 
• Avoidance of preprocessing 
• Allowance of use of lower-grade coal—not coke (HIsarna) 
• DRI with natural gas 
• DRI with coal 

Markets • California standards 
• Wind turbines 
• Markets for lower-carbon products 

Supply sources • Electricity 
• Electricity from renewables 
• Green hydrogen 
• Coal (without need for coke production) 
• Different grades of iron ore 
• Natural gas (rather than coal) 

Organization structures • Collaboration to spread cost of risk among a variety of stakeholders 
including steel companies and association groups, research groups 

• Larger mills 
• Mini-mills 

 
The categories in Table 2 are used to derive characters, the technical term describing evolutionary 
characteristics useful for deriving the cladogram. Thus, we have five character “types” in our 
analysis. When the energy transition is viewed as a driving force for evolutionary change, some of 
the character types are more closely studied than others. In this case, processes and supply sources 
seem to be key drivers. This is because the processes typically used for steel production involve 
direct combustion of coke, a product derived from coal, which involves mining and energy 
intensive preprocessing, as well as large CO2 emissions. Therefore, any processes that reduce 
mining and preprocessing, or can substitute for the direct combustion (particularly via power-to-
X, thereby switching supply characters as well), will help reduce CO2 emissions. Since across 
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categories, some of the examples turn out to be duplicative, the final list of characters differs from 
these examples (for example EAF and mini-mills are often used interchangeably, so only one could 
be used in the final matrix).14 

The characters and taxa together define a character matrix, with characters as rows and taxa as 
columns. Because idealized processes were used as taxa, evaluating process-based characters 
was straightforward. Characters related to products, however, were less clear-cut. For example, 
most continuous cast products (slabs, billets and ingots) are not specific to any particular process.  

Differences in products are not easily tied to the process used to make steel. Though it is true 
most rebar comes from EAFs, the product mix from BF-BOF versus EAF is not constant or 
exclusive. Historically, after EAFs entered the market, BF-BOF firms began to specialize in 
higher-value products (Christensen 2011). EAFs, however, continued to work to improve quality 
so that they could also produce those products (Christensen 2011). Therefore, product 
differentiation is complex. Likewise, for market-based characters, data tying production 
processes to different types of markets (e.g., machinery used for renewables or fossil energy 
production) is scarce. 

Character values can be ambiguous for other reasons. For example, no process in operation is 
carbon-neutral, and even the planned processes may not be carbon-neutral if Scope 3 emissions 
are included. Therefore, there is some subjectivity. The carbon-neutral character is used to show 
whether a process aspires to or is compatible with full carbon neutrality. In the case of EAF, for 
example, if the grid is decarbonized, the process could be almost entirely carbon-neutral. In 
EAFs, chemical reactions do occur, including reduction reactions with carbon. Though we 
assume they are negligible, this is not always the case, as the reactions provide a very convenient 
source of heat, so frequently the furnaces are injected with oxygen to take advantage of the 
chemical energy. Likewise, we assume all DRI—except in the case of an experimental setup 
such as the H2DRI processes—requires natural gas. For processes that include DRI, we assume 
natural gas is a major part of the process, comprising a large part of the feed. Therefore, an iron 
product is created before the steel product in the processes that specifically mention DRI.  

BFs, BOFs, and EAFs operate at very high temperatures. Smelting reduction and molten 
electrolysis (e.g., Boston Metal) also operate at very high temperatures, with fully liquefied 
metal. Direct reduction operates at a lower-temperature threshold as the metal is not fully 
liquefied. Electrolysis in alkaline environments requires a temperature of 110°C, which is much 
lower than other processes. The high-temperature character refers to the ironmaking process. 
For example, in the case of power-to-iron/organic chemical production, the character value is 0 
because a lower-temperature process could be used. All characters used along with the values 
and key are listed in Appendices A–E. The character matrix with scores for each taxon and 
character is shown in Appendix F. 

3.3 Iron and Steel Cladogram: Results and Discussion 
When we ran the heuristic version of maximum parsimony, we found two alternative trees with 
an identical minimum score. The final cladogram, shown in Figure 9, represents a strict 

 
 
14 Character descriptions and final character/taxa matrix are provided in the appendices. 
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consensus tree, where only groupings found in both trees are included. When the trees do not all 
agree on a division, more than two processes branch at a single point; this case is called a 
polytomy. Polytomies can also occur if no clear hierarchy is found at the division point. At the 
top of the cladogram, the BF-BOF is a reference point that is used to root the tree. Other 
processes are shown as diverging from this root process. 

 
Figure 9. Cladogram of the iron and steel sector  

As can be seen in the figure, distinct groupings of processes emerge. In the cladogram, areas 
where much development and innovation seems to be taking place appear as tightly branched 
processes. At the first division point, DRI mixed with BF-BOF and HIsarna are grouped 
together, diverging from the other processes. Next, BF-BOF with CCUS diverges from the rest 
of the group. The three processes focused on chemical production using blast furnace gases and 
coke oven gases form a polytomy in the next branching. The following branch shows the power-
to-iron/organic chemical production. Then, Boston Metal and SuSteel are together in a branch, 
both employing electric technologies at high temperature. SIDERWIN, the other electrolytic 
process, is on a separate branch. The next three branches all include EAF based processes, first 
H2DRI, then DRI & scrap to EAF, and finally Nucor Castrip with Scrap-EAF. 

The cladogram can reflect the relative carbon intensity of the processes, with DRI & BF-BOF 
and HIsarna both representing processes with moderate potential for improvement, while other 
processes offer more potential for emissions decreases. The EAF-based processes are grouped 
together. EAF does not have the waste gas coproducts that allow production of chemicals. 

BF - BOF

Scrap - EAF

Power to Iron, organic chem prod

SuSteel

FReSMe

DRI & BF - BOF

Carbon2Chem

BF - BOF - CCUS

Nucor_Castrip

SIDERWIN

HiSARNA

eforfuels

Boston_Metal

H2DRI

DRI & Scrap - EAF



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

27 

The BF-BOF process with carbon capture makes its own stand-alone branch in the low-carbon 
section of the tree, with proximity to both the DRI & BF-BOF/HIsarna branch as well as the 
processes that utilize the waste gas to produce chemicals. 

The cladogram highlights many different threads of innovation occurring in the iron and steel 
sector. The bottom of the cladogram shows two market-ready technologies, combining more DRI 
with the standard BF-BOF route and HIsarna, both of which offer modest improvements in terms 
of greenhouse gas emissions versus the dominant technology. The increase in DRI as a portion of 
market share in the United States is compatible with such a pathway.  

Larger decreases in carbon intensity require moving towards the middle of the cladogram. There, 
several processes that make use of the carbon-containing waste streams are under development. 
Alternatively, four processes that rely on electrification of the process, via electrolytic production 
in the case of SIDERWIN and Boston Metal, or via plasma in the case of SuSteel, and finally 
electrolytically produced hydrogen in the case of H2DRI. The other group of processes are 
focused on reduced use of ore based metallics, primarily recycling scrap via EAFs. The 
cladogram is a partial representation of the sector because there have been other innovations as 
well in terms of EAF design.  

Therefore, the cladogram reveals a business-as-usual scenario, based on the BF-BOF and the 
EAFs. A scenario with minor reductions in greenhouse gas emissions would focus on the lowest 
branch, with increased implementation of DRI & BF – BOF as well as HIsarna, (the choice 
would likely be based on the location since most DRI plants use natural gas). A scenario focused 
on capturing carbon from fossil fuels used in reduction (the power-to-iron process does not use 
fossil fuels for reduction but rather as the feedstock for chemical production that is coupled with 
the electrolytic iron production in a single plant) for use or storage would look at the BF-BOF-
CCUS as well as the closely related Carbon2Chem, FReSMe, and eforfuel as well as power-to-
iron, organic chemical production. These technologies vary quite a bit in terms of their costs, 
feedstocks (power-to-iron avoids the need for coal) and associated products. Their emissions 
should also vary, but each has the potential to significantly decrease emissions, although the use 
of carbon may simply delay emissions in some cases.  

A scenario based on electrification may consider the electrolytic reduction processes as well as 
the use of hydrogen plasma and the electrolytic production of hydrogen. Costs for these 
processes vary, and emissions decreases depend on the composition of the power generation 
resources. Finally, EAFs already have a much lower carbon intensity than traditional routes, and 
they continue to be studied for improvements. An increase in the proportion of steelmaking from 
EAFs may be considered along with the closely linked process pathways, such as innovations 
surrounding casting as well as an increased proportion of ore-based metallics as feedstock. 

Therefore, examining the iron and steel cladogram for the closest relationships allows 
distinguishing six main groupings: 

1. Traditional BF-BOF 
2. “Modified” BF-BOF (changes in preprocessing, process changes, input changes) 

o DRI & BF – BOF 
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o HIsarna 
3. Carbon capture, use and/or sequestration pathways (mostly still BF-BOF, chemicals 

produced include methanol, formic acid, BTX, methane and others; CO2 could also be 
stored or used directly (e.g. carbonation, enhanced oil recovery)  

o Carbon2Chem 
o FReSMe 
o eForFuel 

4. Electrolysis/carbon use 
o Power-to-iron/organic chemical production 

5. Electrification  
A. High temperature electric process (electrolysis, plasma-based reduction, hydrogen 

reductant) 
o Boston Metal 
o SuSteel 
B. Low temperature electrolytic process 
o SIDERWIN 
C. Electrolytic hydrogen as reducing agent for DRI 
o H2DRI 

6. Scrap-based EAF routes 
o DRI & Scrap - EAF 
o Scrap – EAF 
o Nucor Castrip 

Groupings 1-5 are focused on ore-based metallics, while grouping 6 relies primarily on scrap. 
Existing and increased demand for BF-BOF products may be met by movement or new entry by 
firms into any of groups 2-6. EAFs may be disrupted by these innovations that reduce the carbon 
intensity of steel production from ore-based metallics. Movement of BF-BOFs to group 2 
represents opportunities for small improvements in CO2 intensity, with an advantage that these 
technologies are already market ready. Cleveland Cliffs highlights increased use of HBI in its 
integrated mills in its 2021 sustainability report (Cleveland-Cliffs Inc. 2022). US Steel highlights 
capability for injecting natural gas in the BOF (U. S. Steel 2022).  

Movement by existing BF-BOF producers towards many of the pathways in group 3 should also 
be possible; as group 3 and 4 technologies continue to rely on fossil fuels as a feedstock, some 
existing infrastructure outside the steel plant would still be usable. Group 3 and 4 technologies 
allow larger reductions in emissions intensity but are less developed than group 2. The pathways 
in group 5 are also at a low TRL and are quite different from existing processes, so may be less 
suitable for retrofitting but may be able to meet demand for BF-BOF products once they mature. 
They avoid the use of fossil fuels as feedstock but increase demand for electricity.  
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Movement to group 6, which represents the dominant steel production pathway in the United 
States, can reduce CO2 intensity, but employs a substantially different feedstock and technology 
than the BF-BOF route. This means that the final product is also not a perfect replacement. Thus 
there is an upper limit for the amount of shift towards EAFs, which also reflects scrap 
availability or contamination of scrap resources (Cooper et al. 2020). Still, US Steel recently 
decided not to go forward with upgrades to its integrated mills at Mon Valley Works (Deaux 
2022) and highlighted the acquisition of Big River Steel (a LEED certified plant with an EAF), 
the addition of an EAF at the Fairfield site (formerly the site of an integrated mill) as well as a 
“green” steel product called verdeXTM  that consists of up to 90% recycled steel made at Big River 
Steel in its sustainability report (U. S. Steel 2022). The Big River Steel site uses high-quality 
scrap, so the products made are similar to those made in integrated mills. Cleveland-Cliffs 
acquired Ferrous Processing Technologies in 2021, giving them EAFs throughout the United 
States despite their primary focus on iron ore and ore-based metallics. The company mentions in 
their 2021 sustainability report that all their steel contains scrap (Cleveland-Cliffs Inc. 2022). 

While cladograms are not yet a fully mature method for industrial energy modeling, this exercise 
demonstrates the information and insights that can be gleaned from the process of their 
construction. Still, to understand the energy use associated with industries, facility level data is 
also needed. This need is discussed in the following section. 
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4 Data for Classification 
In this section, we validate an approach for estimating energy use from reported GHG emissions 
data (McMillan et al. 2016; McMillan and Ruth 2019), which helps overcome limitations of data 
availability for fuel use at the facility level, and for industry energy estimates in years when 
MECS is not available. In addition to analyses developed by the National Renewable Energy 
Laboratory, energy estimates developed using this approach have been incorporated into a data 
platform for state and local energy estimates by the U.S. Department of Energy (“SLOPE: State 
and Local Planning for Energy,” n.d.) and for analysis of industrial heat pumps (Alstone et al. 
2021). Section 4.1 describes the dataset used for validation. The first step in the validation is 
matching the facilities between the datasets, which is described in Section 4.2. Once there are 
sufficient matching records, the validation analysis is conducted as described in Section 4.3. The 
results of the validation are provided and discussed in Section 4.4. 

4.1 Overview of Validation Data 
In MECS, the Energy Information Administration conducts a national survey of manufacturing 
establishments with paid employees; firms with a single establishment are excluded (“2014 
Manufacturing Energy Consumption Survey Methodology and Data Quality: Survey Design, 
Implementation, and Estimates” n.d.). For the 2014 MECS, sampling was done based on the 
2012 Economic Census and modified by the 2013 business register to account for new 
establishments.15 A total of 14,900 establishments were sampled, that is, sent a survey form to be 
completed. Though this represents a small portion of the approximately 170,000 manufacturing 
establishments found in the 2012 census, 23 industry groupings were always selected (“selected 
with certainty, including 322121 (Paper Mills Except Newsprint), 322130 (Paperboard Mills), 
324110 (Petroleum Refineries) and 331110 (Iron and Steel Mills and Ferroalloy Manufacturing) 
(“2014 Manufacturing Energy Consumption Survey Methodology and Data Quality: Survey 
Design, Implementation, and Estimates” n.d.). Other facilities were selected based on the number 
of facilities in the corresponding NAICS code, level of fuel use in the prior MECS as well as the 
requirements by the U.S. Energy Information Administration.  

Although the establishments may be sampled at a high or complete rate, there is some 
nonresponse. As large users of fuel are always sampled, it seemed logical that records from 
facilities reporting to GHGRP would typically match to records included in MECS. The U.S. 
Energy Information Administration (EIA) does not specify the threshold for large users of fuels, 
and not all fuel types are included. Nevertheless, published MECS data indicate natural gas 
(38%) and other (37%) represent most of the fuel use for all purposes, although coal (7), coke 
and breeze (2%), and hydrocarbon gas liquids (15%) make up more than 1% apiece. Census 
microdata are not publicly available. Researchers must pass through a vetting process to obtain 
Special Sworn Status to obtain access to Federal Statistical Research Data Centers (United States 
Census Bureau 2022). Any data that are released must be approved through a disclosure process 
(see United States Census Bureau’s Center for Economic Studies (2009) for a more thorough 
description of the process).  

 
 
15 The 2018 MECS was not available at the time. 
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4.2 Matching 
The first stage of the work involved matching data from the Business Register (United States 
Census Bureau n.d.) to MECS, and then from MECS to the GHGRP facilities. Matching MECS 
to GHGRP facilities is a type of unbalanced linear assignment problem. There can be at most a 
1:1 matching; not all facilities are expected to have a match. There is a fuzzy component because 
the entries in the two data sets are not expected to have perfect alignment since the same name or 
address may be written differently, and NAICS categorization has known variation. 

With more than 2,000 manufacturing facilities in the GHGRP system and 14,900 facilities in 
MECS, many matches are possible for each GHGRP facility. We computed the Cartesian 
product with the constraint that the state and ZIP code fields were equal. We then performed 
string-matching on facility names, addresses, and NAICS codes. The Jaro-Winkler distance in 
the jellyfish library for Python (Turk 2021) was computed for all possible matches between those 
pairs of items. The Jaro-Winkler distance gives higher priority to the earlier part of string values. 
To emphasize the first part of the strings even more, we truncated the strings for address and 
facility names to 10 digits. A threshold value of two was used for initial matching. Still, because 
facilities retain the same ID number even if the ownership changes, location and NAICS codes 
are more important. Thus, we also manually inspected the matches before checking them against 
known criteria (e.g., NAICS code and high fuel use) that would predict near-perfect inclusion 
in MECS. 

Fuzzy matching was chosen because while some consistency is expected between the two data 
sets, perfect consistency is unlikely. Facilities in the GHGRP data set have records for 2010–
2019. Iron and steel production was assigned the NAICS Code 331110, which is one of the codes 
MECS tries to sample completely. The GHGRP data set has many facilities in Codes 331111 and 
331112, which were valid in 2007 but not in the 2012 system. Therefore, even NAICS codes, 
which seem to be the most straightforward of the data pieces, are not expected to be exact 
matches. Likewise, address and names can be written differently and can even be somewhat 
ambiguous for the person writing them; some examples are physical versus mailing addresses, 
a facility that is not very close to a street or which has multiple entrances, name changes in roads, 
a facility name versus a company name, abbreviations versus names or addresses written out, and 
a name of a parent company versus a subsidiary. 

4.3 Analysis 
For the analysis portion, we restricted the GHGRP data set to manufacturing facilities reporting 
in 2014. This reduced the data set to 2,253 facilities. Table 3 shows the aggregation of the fuel 
types estimated by the GHGRP procedure next to the fuel types reported via Form EIA-846. 
Conversion factors provided in Form EIA-846 were used to convert the physical quantities to 
energy units (MMBtu). As Table 4 indicates, a higher level of disaggregation is possible for 
MECS fuel types. Where there was disagreement on NAICS code, the MECS NAICS code was 
used for any analysis. Once the facilities were matched, the log difference of fuel use by facilities 
in each data set was taken. A translation was used, adding 1 BTU to both sides (to enable 
calculation of finite log values in all cases). Cement facilities (NAICS Code 327310) were 
excluded from the analysis, as the GHGRP-based fuel use estimation methodology for cement 
facilities has known issues (see McMillan and Narwade 2018). As this was a preliminary study, 
we restricted results to total fuel. 
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Table 3. Concordance of Fuel Types from the GHGRP Data Set and Form EIA-846 

GHGRP Aggregation MECS (Form EIA-846) 

Biomass • Wood harvested directly from trees 
• Pulp and black liquor 
• Agricultural waste 
• Wood residues and byproducts from mill processing 
• Wood and paper-related refuse 

Blast furnace/coke 
oven gas 

• Blast furnace gas 
• Coke oven gas 

Coal • Anthracite 
• Bituminous and subbituminous coal 
• Lignite 

Coke & breeze • Breeze 
• Coal coke 

Diesel • Diesel fuel oil 

Liquefied petroleum 
gas and natural gas 
liquids 

• Butane 
• Ethane 
• Propane 
• Mixtures of butane ethane and propane 
• Other liquefied petroleum gas and natural gas liquids, including butylene 
• Ethylene and propylene 

Natural Gas • Natural gas 

Other • Distillate fuel oil 
• Kerosene 
• Motor gasoline 
• Naphtha and heavier gas oils 
• Bitumen 
• Acetylene 
• Hydrogen 
• Steam 
• Industrial hot water 

Petroleum Coke • Marketable petroleum coke—unrefined or green 
• Marketable petroleum coke—calcined 

Residual Fuel Oil • Residual fuel oil 

Waste Gas • Waste and byproduct gases 

Waste oils tars waste 
materials 

• Waste oils and tars 
• Tire-derived fuel 
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4.4 Results and Discussion 
Our results are summarized in Table 4, Table 5, and Figure 10. The tests were run on the 
facilities that we were able to match between the GHGRP and MECS records. Therefore, the 
total facilities designation corresponds to that grouping. Energy use estimates from the GHGRP-
based method were within +/- 25% of MECS estimates in over 70% of matched facilities16 
(Table 4). Facilities within these bounds accounted for close to half of the energy use reported in 
matched MECS facilities. To understand the difference between the two data sets, we used the 
Wilcoxon-signed rank test. We choose it because the estimates correspond to the same facilities 
and the same year, so are paired rather than independent. It is a nonparametric test, so the 
distribution shape is not assumed. The hypotheses tested were that (1) the mean of the two 
samples were equal and (2) either MECS or GHGRP were higher. The results mean the higher 
MECS estimates are statistically significant, as shown in Table 5.  

Table 4. Matched Facilities Whose Fuel Use Estimates are Within +/- 25% Represent 49.6% of the 
MECS Fuel Reported for the Matched Facilities and 72.6% of the Total Number of 

Matched Facilities 

Percentage Bound % MECS Total Fuel % Matched Facilities, all Fuels 

25 49.60% 72.60% 

Table 5. Results from the Wilcoxon-Signed-Rank Test Showing the MECS Estimates Trend Higher 
than GHGRP-Based Estimates 

Hypothesis Data P-Value 

Diff = 0 All fuels 3.329E-66 

MECS > GHGRP All fuels 1 

GHGRP > MECS All fuels 1.664E-66 

The kernel density estimate (KDE) is also nonparametric. In KDE, a kernel function (in this case, 
the gaussian kernel), is applied at each data point and then the functions are summed. This is a 
probability density function, so its integral sums to 1. The KDE of the log difference between the 
fuel estimates according to MECS versus the GHGRP method is shown in Figure 10. The higher 
bias of the MECS values is shown, as is the right-skew of the log difference. This shows visually 
that while MECS estimates are generally higher than GHGRP estimates, in most cases the 
estimates are quite similar. This provides some justification for using GHGRP data to estimate 
fuel use but shows that there are more outlying cases with higher MECS than GHGRP values 
than cases with higher GHGRP values. Due to the limited nature of this study, we cannot 
determine why MECS fuel use is higher than the GHGRP estimates or why many cases fell 
outside of the bounds. We recommend further study to better understand the discrepancies. 

 
 
16 We cannot disclose the total percentage of facilities that were matched. 
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Figure 10. Kernel density estimation (KDE) of the log difference between the estimates of fuel use 
by MECS versus the GHGRP-based method (log(MECS fuel use) – log (GHGRP-based fuel use)) 
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5 Conclusions 
5.1 Implications for Energy Analysis and Modeling 
In 2020, industry accounted for 36% of the total end uses for energy, more than any other sector 
(EIA 2021). Almost 80% of the energy use by industry involves direct use of fossil fuels, 
particularly via combustion processes (EIA 2018). For the coming decades, industrial 
decarbonization is a key goal (Jean-Pierre 2022; Rissman et al. 2020; Bataille et al. 2018). But 
modeling and projecting industrial energy use is challenging due to heterogeneity in recognized 
sectors (Greening, Boyd, and Roop 2007). Differences in energy use are not well-captured by 
NAICS, and hence energy use projections based on NAICS have high uncertainty.  

Clustering IAC data showed that resulting taxonomies are more explanatory for energy use than 
NAICS. The clusters always include facilities from many NAICS codes. This work shows 
clusters can be found that show similar levels of correlation between energy use and variables 
such as number of employees, sales, and plant area (hours shows less correlation), as do three-
digit NAICS codes. These clusters cut across a swath of NAICS codes, and they can be defined 
at a broader level (i.e., fewer categories or clusters are needed for the same level of correlation). 
The clusters can be distinguished at higher than 80% accuracy using support vector machines 
(using a training set of 90% and test set of 10% of the values).  

Every cluster in our analysis is drawn from a range of NAICS codes, even at the three-digit level, 
lending additional support to the contention that NAICS does not seem to be a good indicator of 
how energy use correlates with the variables in the data set (number of employees, hours, facility 
area, and sales). Still, the IAC data has some weaknesses, as it focuses on smaller and medium-
sized facilities and is biased toward higher energy users for a given facility type. These 
weaknesses could be overcome by a larger-scale study with more representative data. One 
weakness of the phenetic approach is its exclusive focus on energy use and other high-level 
statistics rather than process characteristics, so that causation and facility-level improvements 
may be difficult to infer. Qualitative approaches for analyzing IAC data did not show easily 
identifiable patterns between the plants connected in clusters, suggesting machine learning 
approaches may be useful for determining new classifications of industries that may improve 
industrial energy analysis and modeling. Our approach could be combined with more study of 
industries excluded in the data set to designate a group of industry archetypes.  

In contrast, the cladogram of iron and steel is based on process components, which are key 
drivers of energy use. Though the cladogram contains subjective aspects, so is not as 
unsupervised as the clustering on IAC data, it still reveals patterns that may not be apparent. In 
that sense, phylogenetic inference is similar to machine learning approaches.  

Our prototype approach for constructing an industry cladogram based on process characteristics 
according to the innovation framework derived from Schumpeter is flexible and captures 
evolutionary behavior. The resulting cladogram represents a snapshot in time based on detailed 
study of process characteristics. A key application for this work could be in designing scenarios 
for more detailed modeling, as different branches represent alternative pathways. Cladograms 
may be particularly useful for scenario-based modeling because they can be used to sense and 
compare groupings of emerging or dominant processes and their implications. For example, in 
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steel production, scenario modeling could be used to see the relationship of sectors that use the 
emitted carbon for chemical production such as CO2, organic chemicals, and methanol versus 
processes that do not use carbon as a reductant and therefore do not produce chemicals or CO2. 
The processes are arrayed together making it easy to explore them and understand tradeoffs. 
Constructing a cladogram could be a good first step to analysis of many industries (e.g. 
nitrogenous fertilizer production, ethyl alcohol manufacturing), to understand their 
heterogeneity, emerging trends, and coherent groupings of related innovations. Much attention is 
sometimes given to a small number of processes, but the cladogram helps show related threads of 
innovation in a way that may be helpful for policymakers and entrepreneurs, allowing them to 
see the larger picture, other good ideas, or competitors. 

Because cladistics has not been widely applied to industrial systems, some methodological issues 
must still be worked out. In particular, because the approach is more widely used in biology, 
some software tools need further development to support best practices for cladograms that rely 
on morphological characters rather than molecular evidence. If expanded more generally to 
process technologies that impact a range of facilities, cladistics could uncover trends and 
groupings that allow wider analysis throughout industry. It could also be possible to apply this 
approach to capture a wider portion of industries and identify innovations shared across them, 
and cladistics could thus have wide applicability and potential for industrial modeling. 

Facility-level data availability continues to be a major challenge for industrial modeling and for 
developing industrial modeling approaches that do not rely on NAICS classification. The method 
outlined by (McMillan et al. 2016; McMillan and Ruth 2019) could be a key step toward a 
solution, as it makes facility-level estimates available for industries that are major sources of 
GHG emissions. Until now, however, these energy estimates had not been validated, and the 
validation here provides an important step for further use of estimated facility-level energy use. 

5.2 Additional Research 
This work uncovered several promising avenues for future work. The validation of the method 
outlined by McMillan et al. (McMillan et al. 2016; McMillan and Ruth 2019) supports a broader 
use of the GHGRP data set to provide facility-level estimates, such as providing between-MECS-
year estimates. Because MECS is currently conducted every 4 years, important annual changes 
in energy use may occur that are missed by the MECS survey schedule. The approach that has 
been validated here can be used to create time series of annual data that may be useful in 
analyzing trends in relationships between economic activity and energy use, for example. The 
validation results also raise questions about the areas that show a mismatch between the MECS 
and GHGRP data, and these questions could be explored and used to improve energy estimates 
based on the GHGRP and, potentially, MECS. Due to the limited scope of this project, we could 
not fully investigate the discrepancies.   

The GHGRP-based energy estimates could also be used for additional exploration of taxonomies 
and thus provide a complement to the analysis of the smaller, less energy-intensive IAC facilities. 
The cladistics methodology is promising for showing the evolutionary groupings in industry. 
However, it needs further development and expansion before it can be used to look at additional 
process details (e.g., furnaces or machinery) that could help identify wider trends in energy use 
throughout industry. Perhaps it is possible to construct cladograms of types of furnace or boilers to 
see how market-based characters affect the patterns that emerge. For industries whose evolution is 



 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

37 

of particular interest due to concerns about climate change, such as iron and steel, cement or 
fertilizers, cladograms could be developed as done in this work.  
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Appendix A. Product-Related Characters 
Table A-1. Characters related to products 

No. Character No. States 

1 Iron product 0 
1 

None 
Iron product 

2 Coproduct 0 
1 
2 
3 

None 
Methanol 
Methanol and other chemicals 
Other chemicals 
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Appendix B. Process-Related Characters 
Table B-1. Characters related to process attributes 

No. Character No. States 

1 Ironmaking 0 
1 
2 
3 

None 
Pig iron 
Pig iron and sponge iron/DRI/HBI 
Sponge iron/DRI/HBI 

2 Power to X 0 
1 

Not electrolytic process 
Electrolysis based process 

3 Electrolytic iron production 
Process 

0 
1 

No electrolysis 
Electrolytic iron reduction 

4 Carbon reductant 0 
1 

Carbon used as reducing agent 
Carbon not used as reducing agent 

5 Preprocessing of coal required 0 
1 
2 

No 
Some 
Yes 

6 Pelletization of iron ore required 0 
1 

No 
Yes 

7 High temperature  0 
1 
2 

Lowest range 
Medium range 
Highest range 

8 Carbon-neutral 0 
1 

No 
Yes 

9 Casting process 0 
1 

Casting 
Direct plate (no casting) 

10 Facility size/modularity 0 
1 

Small/modular 
Large 

11 Circularity 0 
1 

Does not contain CE component (extract  consume) 
Contains circular economy component  
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Appendix C. Markets 
Table C-1. Characters related to markets 

No. Character No. State 

1 Low-carbon market eligible 0 
1 
2 

No 
Some 
Yes 
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Appendix D. Supply Sources 
Table D-1. Characters related to supply sources 

No. Character No. State 

1 Grid electricity for process 0 
1 

Not used 
Yes 

2 Green hydrogen for process 0 
1 

Not used 
Yes 

3 Coal as process feedstock 0 
1 
2 

Not used 
Coal 
coke 

4 Scrap 0 
1 
2 

Not used 
<50% iron feed 
>50% iron feed 

5 Iron ore 0 
1 
2 

Not used 
Low grade 
High grade 

6 Natural gas as process feedstock 0 
1 

Not used 
Yes 
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Appendix E. Organization Structures 
Table E-1. Characters related to organizational structure 

No. Character No State 

1 Collaboration 0 
1 

No 
Yes 
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Appendix F. Character Matrix 
Table F-1. Character matrix used for cladogram construction 
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Iron product 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 

Coproduct 0 3 0 0 0 0 0 0 0 0 0 3 2 1 3 

Ironmaking 1 1 0 2 3 1 3 1 1 0 1 1 1 1 1 

Power to X 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 

Electrolytic Iron Reduction 
Process 

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 

Carbon used as reductant 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 

Preprocessing of coal required 2 2 0 1 0 0 0 0 1 0 0 0 2 2 2 

Pelletization of iron ore required 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 

High temperature 2 2 0 2 0 0 1 2 2 2 2 2 2 2 2 

Carbon-neutral potential 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 

Casting Process 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

Facility size/modularity 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 

Circularity 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

Low-carbon market eligible 0 2 1 0 1 2 2 2 1 0 2 2 1 1 1 

Grid electricity for process 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 

Green hydrogen for process 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 

Coal as process feedstock 2 2 0 0 0 0 0 0 1 0 0 0 2 2 2 

Scrap 0 0 2 0 2 0 0 0 0 2 0 0 0 0 0 

Iron ore 2 2 0 2 2 2 2 1 1 0 1 2 2 2 2 
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Natural gas as process feedstock 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 

Collaboration 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 
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