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Abstract—This paper introduces a novel approach for 

generating solar photovoltaic (PV) plant deployment scenarios 

for grid integration planning. The approach guarantees 

consistency among scenarios of the same deployment by 

ensuring that higher penetration scenarios contain PV units 

deployed in lower penetration scenarios. It also constrains the 

size and spatial distribution of the PV plants and considers three 

placement types. A case study on a real-world distribution 

system proves that the precepts of scenario consistency, 

deployment diversity, and placement are met. The study further 

investigates the impact of the resulting scenarios via a stochastic 

hosting capacity analysis. Results indicate that the ratio between 

PV and load sizes, referred to as the nodal PV penetration factor 

(NPPF), is a key driver of the grid integration impact. By 

reducing the NPPF from 5 to 2, the maximum hosting capacity 

increased by at least 112%. The study also reveals that scenarios 

under random placement can lead to higher hosting capacity 

values. 

Keywords— Photovoltaics, energy systems integration, PV 

scenario generation, hosting capacity, grid integration planning. 

I. INTRODUCTION 

As the world embraces the decarbonization of its power 
system, grid operators must understand how their systems 
would fare under various future PV deployment scenarios. To 
this end, detailed interconnection or integration planning 
studies are critical. Such studies require the development of 
realistic scenarios of distributed photovoltaics (DPV). While 
it is vital to investigate system level constraints in the impact 
analysis phase, it is equally important to consider nodal or 
local constraints in the scenario generation phase. An example 
of such a constraint is the amount of DPV that is allowable at 
a node given local circumstances such as demand and service 
transformer size. Very few authors have considered the impact 
of local or nodal grid constraints when generating DPV 
deployment scenarios at increasing penetration levels. 

Ding et al. [1] used a Monte Carlo approach to generate 
PV deployment scenarios with PV locations selected 
randomly and then assigning one aggregate PV unit to each 
location. This type of stochastic analysis only generates DPV 
systems randomly, without considering local or nodal capacity 
constraints to accommodate DPV units. Further, Arshad et al. 
[2] used a Monte Carlo approach to generate several possible 
customer permutations with a uniform probability distribution 
function to randomly distribute DPV systems. Arshad et al. 
assumed that all the PV nodes have the same amount of active 
power generation, but, again, this does not reflect realistic 

deployment scenarios. Navarro-Espinosa et al. [3] used a 
Monte Carlo analysis to account for uncertainties resulting 
from size, location, and behavioral characteristics of solar PV 
units integrated in low-voltage distribution systems. Further, 
Avramidis et al. [4], applied a Monte Carlo simulation 
framework taking into consideration the stochastic behavior 
of the various network elements to assess distributed energy 
resource impact and demand side flexibility. However, 
probabilistic analysis based on Monte Carlo simulation is 
challenging for two reasons. Operational profiles are 
generated by computationally intensive optimization. It also 
relies on a large pool of statistically representative demand 
profiles to sample from [5]. 

Liu et al. [6] also used the stochastic approach and random 
DPV deployment scenarios for hosting capacity analysis, and 
Ceylan et al. [7] used a Monte Carlo method for DPV system 
integration. Al-Alamat et al. [8] used a deterministic approach 
in an iterative simulation. The approach increases DPV size at 
each step on all nodes to determine the hosting capacity in a 
distribution feeder based on knowledge of the grid’s topology 
and parameters. This deterministic approach assumes that all 
PV sources are producing the same amount of power, which 
does not represent a realistic deployment scenario. Ismael et. 
al have provided an extensive review of the research and 
advances made in hosting capacity analysis. Over the years, 
several analytical, stochastic, and deterministic methods have 
emerged to generate PV deployment scenarios for hosting 
capacity analysis [9]. 

In the PV scenario generation phase, very few authors 
have considered, local or nodal circumstances (such as the size 
of spot loads at the connecting nodes) coupled with other 
factors, such as being near or far from the feeder head. The 
existing literature has considered stochastic or deterministic 
DPV deployment scenarios, with only random cases, and with 
the assumption that all PV sources are injecting the same 
amount of power.  

In this work, we introduce a novel approach to generate 
DPV deployment scenarios for the realistic and robust 
planning of DPV integration into distribution grids. The 
proposed approach explicitly accounts for different spatial 
distributions of PV units as well as their size relative to 
corresponding spot load. Many deployment samples or paths 
can be generated for integration planning studies. 

Our contribution in this area is fourfold: 
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o In the DPV scenario generation, we introduce a 
sequential PV deployment approach that enables the control 
of PV unit clustering along a distribution feeder.  

o We introduce a load-relative bound on customer PV 
capacity which we refer to as the NPPF. 

o We explicitly ensure consistency among PV 
scenarios belonging to the same deployment sample.  

o We study the sensitivity of the grid impact from the 
NPPF and PV unit placement. 

The remainder of this paper is organized as follows. 
Section 2 presents the methodology of the proposed approach. 
In Section 3, we present a case study in which PV scenarios 
are generated for an 11.5 kV distribution feeder across three 
placement types and four NPPF values. We evaluate the 
integration impact of each scenario. Section 4 concludes the 
paper. 

II. METHODOLOGY 

A. PV scenario generation 

The PV deployment scenario generation method exposed 
in this paper aims to provide (i) a sequence of PV scenarios 
that are consistent in the order of penetration levels and (ii) 
diversified PV deployment pathways to grid integration 
targets. To this end, the algorithm presented in Fig. 1 uses a 
multi-penetration level and multi-sample approach. For a 
given distribution feeder, one can define any valid penetration 
margin. Many deployment pathways are often necessary in 
PV grid integration planning. The method presented in this 
work designs each deployment pathway or sample as a 
succession of PV unit batch deployment in which higher 
penetration scenarios must have all PV plants deployed in 
lower penetration scenarios, as expressed by equation (1):  

������
� ⊂ �����	

�    ∀ � < �                                           (1) 

where �����	
�  is the series of PV units in the deployment 

sample, s, at penetration level, p. Note that a PV deployment 
scenario is thus referenced by the couple (p, s), with p its 
penetration level and s the deployment pathway of the sample 
to which it belongs. 

A key factor that affects how much impact a PV 
deployment would have on the distribution grid is the location 
of the PV units. Jain et al. found that voltage and thermal 
impacts of PV scenarios depend on the placement of the PV 
units, whether they are clustered close to the substation or at 
the tail end of the feeder [10]. To account for the importance 
of location, we develop three substation-referenced distance-
based PV unit placement categories: namely, close to 
substation, far from substation, and random. We use metric 
distance to measure the closeness of a customer to the 
substation.  

In the close and far placement categories, the distance 
interval from the closest bus to the substation to the farthest 
bus from the substation is sliced into n equal-length search 
segments. To generate the PV deployment scenarios, the PV 
candidate buses are randomly and sequentially drawn from 
one search segment at a time. The larger the number of search 
segments, the shorter each segment, and consequently the 
closer the PV units are bound to be. Hence, at low penetration 
levels, the spread or clustering of PV units can be controlled 
by the number of search segments.  

For the close placement category, the search segments are 
explored from the closest segment to the substation to the 
farthest. For scenarios in the far placement category, the 
search segments are explored in the reverse order, i.e., from 
the farthest segment from the substation to the closest. The PV 
candidate search ends when the target PV penetration is 
reached. In the random placement category, however, only 
one search segment is formed, which covers all candidate 
buses. From this unique search segment, candidates are 
randomly drawn, and a PV capacity is assigned to each 
candidate bus.  

In this work, we assume that the size, ��  of the PV unit for 
customer i is bounded by a threshold value, ��

��� , 
proportional to the customer’s peak load, ����� . The 
proportionality factor, referred to in this paper as the PV factor 
or the NPPF, is given by equation (2): 

����� =
�����

���
                                                               (2) 

where ��� is the load factor of customer i, ��� is the capacity 
factor of the solar PV of customer i, and τ�  is the target 
maximum portion of the annual energy consumption that 
customer i would want solar PV to offset. The relationship 

between the energy consumption,  �!, and generation,  "!, is 
given by equation (3): 

 "! =  #! �!                                                                  (3) 

The total energy,  "! , generated by a PV unit, i, with the 

capacity factor, ��!, and size, �!
$�%, during the time period, 

T, is given by (4): 

 

       "! =  ��!�!
$�%&                                                         (4) 

Similarly, the total energy,  �! , consumed by the 

corresponding load, ! , with the load factor, ��! , and size, 

����!, is given by (5): 

 

      �! = ��!����!&                                                         (5) 

 

Merging (3), (4), and (5) leads to (6): 

      
     �����

��� = τ���������                                                 (6) 

 

Thus: 

     ����! =  
�!

$�%

����!

=
τ!��!

��!

                                                 (7) 

 
Consequently, the PV capacity for customer i must satisfy (8): 

�� ≤ ����������                                                          (8) 

Another size-binding parameter considered in PV scenario 
generation is the surface area that is available for installation. 

The proposed PV scenario generation approach is 
presented by the flowchart in Fig. 1. 

B. PV scenario grid impact analysis 

To evaluate the PV scenarios and assess their impact on 
the grid, we conduct a capacity integration analysis. In this 
analysis, every PV scenario is screened for voltage, thermal 
loading, and reverse power flow limits across a set of system- 
level bounding conditions. 
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All passing scenarios must result in voltage values within 
any utility-specific standard. They must also result in line and 
transformer loadings less than their rated capacities. The 
reverse power flow limit is set as a percentage of the total load 
on the feeder. For utility systems where no back-feed is 
allowed at the substation for protection reasons, the limit is set 
to zero; thus, violations can be of any or a combination of the 
following types: undervoltage, overvoltage, line overload, 
transformer overload, and reverse power flow. 

 

 

Fig. 1. Proposed PV deployment scenario generation approach 

 

III. CASE STUDY 

The objective of this case study is twofold, demonstrating 
our proposed PV scenario generation methodology and 
deriving the implications of the placement and size thresholds 
of PV units for the hosting grid. To this end, we conduct the 
following two analyses:  

o Comparison of PV scenarios at 20% and 40% 
penetration levels within the same deployment sample 
or pathway across all three placement types: close, 
far, and random.  

o Sensitivity of grid impact and feeder hosting capacity 
regarding PV placement and size threshold.  

The proposed approach is implemented and evaluated in 
Python coupled with OpenDSSDirect1, a Python direct-mode 
interface to OpenDSS, used as the power flow simulation 
engine. 

A. Test feeder 

The proposed PV scenario generation methodology is 
evaluated and tested on an 11.5 kV, real-world distribution 
feeder serving 86 customers, with a maximum non-coincident 
load of 3.2 MW. The network is built around 1273 buses and 

                                                           
1 https://dss-extensions.org/OpenDSSDirect.py/ 

1186 lines. No PV unit originally exists on the test feeder. Fig. 
2 shows its peak load condition voltage values mapped on the 
network topology. 

 

Fig. 2. Test feeder voltage mapped on the topography in peak loading 

condition—voltage in p.u. 

B. Results and discussion  

1) Deployment consistency and PV unit spatial 

distribution: 
Consistency among PV scenarios of the same deployment 

path captures what happens in practice. When connecting a 
new PV unit, the existing ones are not removed. In addition, 
consistency allows to fully identify an entire deployment 
sample as a target pathway to a given penetration. 

To demonstrate how the proposed scenario development 
approach ensures consistency in PV deployment among 
consecutive penetration levels, we examine two scenarios—
20% and 40% penetration levels for the above-presented 
feeder. Next, we showcase how our proposed approach 
spatially distributes the PV units on the network under the 
three placement types: close, far, and random. Fig. 3 presents 
the deployment consistency between the 20% and 40% 
penetration scenarios and their spatial distributions under the 
close, far, and random PV unit placements with NPPF = 3.  

As shown in Fig. 3, in the close and far placement 
scenarios, the PV units represented by squares are clustered 
near the feeder head and tail, respectively. On the other hand, 
random placement scenarios are neither restricted to the head 
nor to tail end of the feeder; rather, PV units are spatially 
randomly distributed across the feeder. Note that for all 
placement types, the PV units deployed in the 20% penetration 
level scenario are also deployed in the 40% penetration 
scenario. This confirms the sought-after consistency among 
consecutive penetration levels in the PV deployment 
scenarios. 

2) Integration impact sensitivity to PV unit placement 

and NPPF: 
To evaluate the integration impact of the scenarios that we 

developed with the proposed approach, we conduct a feeder 
hosting capacity analysis. As input to the impact study, we 
generate 30 PV deployments that have 30 penetration levels 
each. The penetrations range from 5% to 150% at 5% 
increments. So, each hosting capacity analysis investigates 
900 PV deployment scenarios. In this case study, the 900 PV 
scenarios were generated in 4.83 seconds. 

The operating parameters considered are voltage, thermal 
loading, and reverse power flow. In this case study, as per the 
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electric utility company’s standard, voltage values outside of 
the [0.9, 1.1] interval are considered violations, as are 
transformer and line loadings exceeding 100%. We set the 
reverse power flow threshold at 20% of the feeder’s non-
coincident peak load. Any reverse power exceeding this 
threshold, flowing to the substation, is considered a violation. 

 

Fig. 3. PV deployment consistency and spatial distribution of PV units. The 

PV units are represented by colored squares, with the color indicating their 

capacity in kW on the scale shown by the color bars. 

 
For each of the 900 PV deployment scenarios, the impact 

on the distribution grid is evaluated across three bounding 
conditions extracted from the aggregate load and PV profiles. 
The conditions correspond to maximum load, maximum PV 
to load, and minimum daytime load. We refer to this analysis 
as a multi-timepoint hosting capacity analysis (MTHCA). 
Each MTHCA investigates 2700 power flow simulations for 
voltage, thermal, and reverse power flow. Fig. 4 shows a 
color-coded violation map of an MTHCA conducted with PV 
scenarios generated with NPPF = 3 under the random 
placement type. Violations encountered are transformer 
overload, RPF, and overvoltage. The figure also shows the 
spatial distribution of the PV deployment scenario with the 
highest capacity that yields no violation, corresponding to 
80% penetration and deployment type 10. 

As shown in Fig. 4, the ability of the test feeder to host 
DPV is first limited by the thermal loading of the service 
transformers. Because there is no transformer overloading in 
the existing case, this violation is caused by the integration of 
PV scenarios as early as 5% penetration in deployments 3, 6, 
11, and 29. Given that the PV power injection depends on the 
size of the PV units, constraining individual PV unit’s 
capacity, as in equation (3), is critical. This constraint could 
significantly reduce the probability of service transformer 
overloading. This explains why reducing NPPF from 3 to 2 
leads to the first transformer overloading occurring at 10%. 

To determine the sensitivity of the integration impact with 
regard to the PV unit placement and size (constrained by the 
NPPF), we perform the MTHCA for four NPPF values (2, 3, 
4, 5) and for all three placement types: close, random, and far. 
Uniform NPPF values exceeding 1.5 are selected to ensure 
that the target maximum PV penetration level of 150% is 
achievable. The combination of NPPF values and placement 
types, results in 12 MTHCAs that comprise our sensitivity 
analysis. Fig. 5 shows the minimum and maximum hosting 
capacity values from each of the 12 MTHCAs. The maximum 
hosting capacity (Max HC) refers to the maximum penetration 
level at which we can find at least one PV scenario that does 
not cause any violation. For example, in Fig. 4, Max HC is 
80%. The minimum hosting capacity (Min HC) is the highest 
penetration level below and at which all PV scenarios cause 
no violation. In the analysis presented in Fig. 4, the Min HC 
is 0%. 

 

Fig. 4. Sample violation map of system PV hosting capacity analysis along 

with the spatial distribution of the passing PV scenario with the highest 

capacity (kW). Here OV stands for overvoltage, RPF is reverse power flow 
and TO is transformer overload. 
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Fig. 5. Sensitivity of system hosting capacity to NPPF and PV unit 

placement 

Based on the sensitivity analysis results shown in Fig. 5, 
there is a clear indication that the lower the NPPF, the higher 
the maximum hosting capacity. In fact, local violations, such 
as overvoltage and transformer overloads, are likely to occur 
when installed PV capacity is relatively high compared to the 
corresponding spot load. Therefore, with lower NPPF values, 
local violations are significantly mitigated. By reducing the 
NPPF from 5 to 2, the maximum hosting capacity increases 
from 10% to 65% for close placement, from 40% to 85% for 
random placement, and from 0% to 25% for far placement.  

Results also indicate that random placement yields a 
higher maximum hosting capacity. In fact, random placement 
is more likely to capture a more diverse set of scenarios, 
whereas close and far placement might be restricted by their 
clustering nature. Consequently, random placement results in 
a wider hosting capacity range, i.e., the lowest Min HC and 
the highest Max HC. Even for the random placement where 
the maximum hosting capacity values are the highest, the 
maximum hosting capacity increases by 112% when the 
NPPF decreases from 5 to 2. 

IV. CONCLUSION 

In this paper, we propose a novel methodology for 
generating PV scenarios for grid integration planning studies. 
The proposed approach explicitly accounts for the spatial 
distribution of PV units as well as their maximum allowable 
capacities relative to the corresponding peak spot loads. A 
case study on a real-world distribution feeder reveals that 
higher PV grid integration capacities can be achieved with 
random PV placement and with lower nodal PV to spot load 
ratios or NPPF. These results suggest that the NPPF limit is an 
interesting indicator that regulators and utilities should 
consider in the evaluation of new PV integration plans, as the 
choice of NPPF can significantly impact the amount of PV the 
network can host. Among all PV placement types 
investigated, random placement can be considered as a 
reference placement because it leads to wider hosting capacity 
margins. In future work, we will explore an optimization-
based PV deployment method that explicitly ensures 

diversified and homogeneous PV scenario sets with regard to 
the siting and sizing of PV units for grid integration planning. 
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