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Abstract—This paper focuses on using variations of the Frank-
Wolfe algorithm for solving unit commitment problems with
high volumes of demand responsive loads on the power grid.
We present a formulation of the unit commitment problem with
demand responsive loads. We then show through reformulation
and relaxations of the problem that variations of the Frank-Wolfe
algorithm can be used to determine the time series decisions for
the demand responsive loads. We show through computational
experiments on the IEEE Reliability Test System that the time
series of demand responsive load decisions obtained through our
approach are near optimal and describe how large-scale parallel
implementations of our approach can be highly computationally
efficient.

Keywords—Demand Response, Unit Commitment, Frank-Wolfe
Algorithm

I. INTRODUCTION

Production cost models (PCMs) are used to simulate
scheduling of power generation and transmission system op-
erations to minimize the cost of generating electricity to meet
demand. They are often used by utilities, regional transmission
operators, and independent system operators to evaluate gen-
erator and/or transmission expansion plans and understand the
impacts of scheduling practices under different resource real-
ization scenarios. Simulations typically consist of a sequence
of rolling-horizon least-cost optimization problems to establish
generator unit commitment (UC) and/or (economic) dispatch
(ED) schedules. PCMs can be used to predict electricity prices,
emissions, resource adequacy, and other system and market
conditions. These features, along with the sensitivity of PCMs
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to cost inputs, make PCMs particularly well suited for policy
analysis. As an example, they can be used to understand
the system reaction to different inputs changes [1], such as
load rescheduling in coordination with generation forecasts
using electricity prices, often refereed to as demand response
(DR)[2].

Benefits of considering DR in PCMs include efficient
resource use, reduced market wholesale prices by removing
the need to use expensive generators during high demand pe-
riods, improved system reliability, and payment and incentives
received by customers who participate in DR programs [3]. In
addition, the need for flexible resources to maintain supply-
demand balance can increase as power grids incorporate more
variable renewable energy. Distributed and schedulable energy
resources, such as electric vehicles and batteries, as well as
other schedulable load have the potential to provide additional
flexibility at low cost. Solving a centralized UC problem that
considers DR from distributed energy agents can facilitate
scheduling load and energy production from the different DR
agents to improve grid reliability in the face of increased
renewable energy penetration [4], [5]. Additionally, solutions
can provide a useful baseline to compare results from different
demand response market structures. However, expanding the
scope of system scheduling problems to include distributed and
demand side resources can lead to computational challenges.

This paper contributes to the literature by providing a
novel approach for obtaining high quality solutions to the UC
problem with flexible load scheduling, which we demonstrate
through computational experiments. This is done through a
reformulation of the problem which allows for variations of the
Frank-Wolfe (FW) algorithm [6] to be applied. We also explain
how computationally efficient implementations are possible
via warm starting and parallel computation, making these
approaches promising for large scale problems.

This paper is structured as follows. In section II we
present the UC problem with flexible loads. In section III we
present our problem reformulation, along with our solutions
approaches. In section IV we present the test case used for
our computational experiments. In section V we present and
discuss results from our computational experiments, and in
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section VI conclusions are drawn.

II. PROBLEM STATEMENT

Similar to [7], we present a generic version of the UC prob-
lem, but with demand responsive agents and their respective
flexible loads, which we call the UCDR problem. Here G is the
set of generators, T = {1, . . . , NT } is the set of time periods.
ptg and xtg represent the generator set point and any internal
state variables of generator g at time t respectively. Note we
let pg = (p1

g, . . . , p
NT
g ) and xg = (x1

g, . . . , x
NT
g ) where each

xtg might be a tuple of internal generator state variables (e.g.,
unit on/off). ctg is a linear function of ptg and xtg that computes
the cost of operating generator g at time t. The variables yt,±i
are power imbalance slack variables at bus i at time t used in
equation (2) to ensure feasibility. cti is a linear function of yt,±i
that enforces a high penalty for power imbalance at bus i at
time t. Equation (2) is the power balance constraint at a given
bus and time, where Φ is the set of buses, and E is the set of
lines with arbitrary directions assigned. f te is the power flow
on line e at time t, Ein(i) and Eout(i) represent directed lines
into and out of bus i, respectively, Gi represents generators at
bus i, and d̂ti is the associated fixed demand. The line limits are
modeled by (3). We use the DC approximation to AC power
flow, given by (4), where θti is the voltage angle at bus i at
time t, and Be represents the line susceptance of transmission
line e [8]. We let Πg represent the set constraints that specify
the set of feasible dispatch schedules (pg, xg) for generator g
over the horizon T .

min
p,x,y±

∑
g∈G,t∈T

ctg(p
t
g, x

t
g) +

∑
i∈Φ,t∈T

cti(y
t,+
i , yt,−i ) (1)

s. t.
∑
g∈Gi

ptg +
∑

e∈Ein(i)

f te −
∑

e∈Eout(i)

f te (2)

= d̂ti +
∑
a∈A

sta,i + yt,+i − yt,−i ∀ i ∈ Φ, t ∈ T

F e ≤ f te ≤ F e ∀e ∈ E (3)
Be
(
θti − θtj

)
= f te ∀e ∈ E , t ∈ T. (4)

(pg, xg) ∈ Πg ∀g ∈ G (5)
(sa, za) ∈ Πa ∀a ∈ A (6)

This problem differs from a standard UC problem in that it
contains the variables sta,i in (2) and the additional constraints
in (6). We let A be a set indexing the demand responsive loads
in the system. The variables sta,i represent the load at time t
on bus i from the demand responsive load a ∈ A. For each
demand responsive load we let sa represent the collection of
these variables. The constraint set for each demand responsive
load a is denoted by Πa, which determines its feasible set of
schedules. We let za be the collection of any internal state
variables for demand responsive load a, similar to xg for the
generators. We assume for the duration of this paper that the
sets Πg and Πa consist of linear constraints where the variables
za and xg be can be continuous and integer. Thus the UCDR
problems is a mixed integer linear program (MILP).

III. SOLUTION APPROACHES

To address potential difficulties when solving UCDR model
using traditional methods and we propose a solution method

that leverages relaxations of the UCDR to obtain good solu-
tions with less computational difficulties. Obviously the most
straight forward solution approach to solve the UCDR problem
is to use a traditional solution method such as branch and cut
to solve to it directly. There are a few reasons that solving the
UCDR might be harder than solving the standard UC problem.
One reason is that if |A| is large, a large number of constraints
and potentially integer variables are added to the problem. A
second reason is that flexible loads at every bus have the same
mathematical impact as virtual bidders at every bus, which is
known to cause computational issues for the UC problem when
utilizing power transfer distribution factor or generation shift
factor transmission formulations [9], [10]. To address these
computational issues we present two methods to obtain high
quality solutions to the UCDR problem.

A. The Linear Programming Relaxation

The first approach we present is straightforward. We first
solve the linear programming (LP) relaxation of the UCDR
problem which we denote as (R-UCDR). If za contains integer
variables for any of the demand responsive loads, the values of
the variables sta,i must be projected onto the set Πa to ensure
feasibility. We denote the projected values by d̂ta,i. Next the
d̂ta,i values are used to fix the values of the variables sta,i in
equation (2) creating a standard UC problem to be solved. This
approach makes sense when the R-UCDR is easy to solve and
is a tight enough relaxation of the UCDR problem so that the
values d̂ta,i obtained provide good estimates for the variables
sta,i in the true UCDR problem. However, the R-UCDR might
not be an easy problem to solve on a large network when
|A| is large, due to a dense constraint matrix see [9], [10].
Additionally, this method forces the variables xg and zg to
be continuously relaxed which in turn relaxes the constraint
sets Πa and Πg . These relaxations run the risk of reducing the
quality of the d̂ta,i values obtained. We now present a method
that has the potential to address these issues.

B. The Frank-Wolfe Algorithm

Variations of the FW [6] algorithm can be used to obtain
high quality solutions to a relaxation tighter than the R-UCDR.
These solutions can then be used in the same fashion as the
solutions to the R-UCDR were used to compute solutions to
the UCDR via projections and variable fixing. The traditional
FW algorithm solves the following problem

min
s∈D

f(x) (7)

where D is a convex compact set in a vector space and f is
convex differentiable function mapping into the real numbers.
In [11] the authors extend the FW algorithm and establish
convergence in the case where f is only convex and L-
Lipschitz continuous as follows:

1) initialization: 0← k, x0 ∈ D, −∞← lk, ε
2) solve

min
s∈D

max
d∈T (xk,ε)

f(xk) + (s− xk)T d (8)

3) update step size α← 2
k+2

4) update solution xk+1 ← xk + α(s− xk)
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5) compute upper bound uk ← f(xk+1)
6) compute lower bound lk (see [11] for details)
7) if: uk − lk < ε

break
else:

return to step 2.

We will refer to this algorithm as FW-max. Here we let ∂f(x)
denote the subdifferential of f and the point x. Let N(x, ε) be
a neighborhood around x and define T (x, ε) as

T (x, ε) :=

{∇f(x)} if f is differentiable on N(x, ε)⋃
u∈N(x,ε)

∂f(u) otherwise.

Equation (8) can be viewed as picking the most robust search
direction s by considering the “worst case” linear approxima-
tion created from the set of all subgradients at nearby points,
from the perspective of the resulting objective value.

To apply the FW-max algorithm, we must refomulate the
UCDR problem to obtain an appropriate relaxation.

min
d

H(d) (9)

s. t. dti = d̂ti +
∑
a∈A

sta,i (10)

(sa, za) ∈ Πa ∀a ∈ A (11)

where H(d) is defined as

H (d) =

min
p,x,y±

∑
g∈G,t∈T

ctg(p
t
g, x

t
g) +

∑
i∈Φ,t∈T

cti(y
t,+
i , yt,−i ) (12)

s. t.
∑
g∈Gi

ptg +
∑

e∈Ein(i)

f te −
∑

e∈Eout(i)

f te (13)

= dti + yt,+i − yt,−i ∀ i ∈ Φ, t ∈ T
F e ≤ f te ≤ F e ∀e ∈ E (14)
Be
(
θti − θtj

)
= f te ∀e ∈ E , t ∈ T (15)

(pg, xg) ∈ Πg ∀g ∈ G. (16)

Here we collect all variables dti in d. This problem defined by
(9) - (16), is equivalent to the UCDR problem. Additionally,
when any integer variables in (16) are relaxed it is well known
that H becomes a convex piece-wise linear function of d, see
[12], [13]. We will denote the resulting function from this
relaxation as Ĥ . Using Ĥ we can now define a relaxation of
the UCDR problem as follows

min
d

Ĥ(d) (17)

s. t. dti = d̂ti +
∑
a∈A

sta,i (18)

sa ∈ Conv(Πa) ∀a ∈ A (19)

where Conv(Πa) denotes the convex hull of the set of feasible
sa. We denote this problem as R-UDCR-FW, and note that
since we optimize over Conv(Πa) it is a tighter relaxation
than R-UCDR. One does however need a way to optimize
over the sets Conv(Πa). Fortunately, the FW algorithm and its
variations provide a way to do exactly this without an explicit
representation of the convex hull sets.

By approximating the set T (x, ε) through sampling nearby
subgradients and maximizing over the convex hull of those
subgradient samples, we can apply an approximate FW-max
algorithm to solve the R-UCDR-FW problem. This algorithm
we refer to as FW-sample and the algorithm is as follows when
applied to the R-UCDR-FW problem.

1) initialization: 0 ← k, ε, n, N , and d0 feasible for
(10) and (11)

2) solve Ĥ(d0) and collect dual variables πti from con-
straints (13).

3) solve

min
sa∈Πa
a∈A

max
π∈Γ

Ĥ(dk) +
∑
i∈Φ

∑
t∈T

(
d̂ti +

∑
a∈A

sta,i − dti,k

)
πti

(20)

4) update step size α← 2
k+2

5) update solution dti,k+1 ← dti,k+α(d̂ti+
∑
a∈A

sta,i−dti,k)

6) compute Ĥ(dk+1) and collect dual variables πti from
constraints (13).

7) for j = 1, . . . , N
sample dk+1,j ∈ B(dk+1, ε)
solve Ĥ(dk+1,j)
collect dual variables πti,j from constraints (13)

8) k + 1← k
9) if: k > n

break
else:

return to step 3.

The dual variables πti from constraints (13) constitute a sub-
gradient of Ĥ , see [13]. Here Γ = Conv(π1, . . . , πN ), and
B(dk+1, ε) is a closed ball of radius ε is some norm around
the point dk+1. In this algorithm we sample N points nearby
the current flexible load value dk+1 in the set B(dk+1, ε)
and collect N subgradients using those nearby points. The
convex hull of these N subgradients, Γ, is then used as
our approximation of T (x, ε). We note that this approach
leads to many interesting research questions about how to
best approximate T (x, ε) through sampling approaches. Here,
we omit the upper and lower bound computation steps from
the algorithm because it is being used as a heuristic. It’s
also worth highlighting that omission of step 7 in the FW-
sample algorithm results in the classic FW algorithm, but using
subgraidients.

Steps 3, 6, and 7 are the most computationally intensive
steps in this algorithm. In step 3 we can take advantage of the
fact that optimizing (20) is equivalent to optimizing∑

a∈A
min
sa∈Πa

max
π∈Γ

∑
i∈Φ

∑
t∈T

(sta,i +
1

|A|
(d̂ti − dti,k))πti (21)

which can be done by optimizing

min
sa∈Πa

max
π∈Γ

∑
i∈Φ

∑
t∈T

(sta,i +
1

|A|
(d̂ti − dti,k))πti (22)
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for each a ∈ A separately. Optimizing (22) for a given a can
be shown to be equivalent to optimizing

min
t,sa

t (23)

s. t. t ≥
∑
i∈Φ

∑
t∈T

(sta,i +
1

|A|
(d̂ti − dti,k))πti,j ∀ j ∈ {1, . . . , N}

(24)
sa ∈ Πa. (25)

Provided N is not too large the optimization problems defined
by (23) - (25) for each a ∈ A are small LPs or MILPs which
can still be solved very fast. We also note that step 3 can be
carried out in parallel over the set A.

The other computationally intensive steps 6 and 7, where
Ĥ(dk) is computed N + 1 times, involves solving the LP
relaxation of a UC problem. This problem has fixed loads
at each bus, so the sparsity concerns regarding the constraint
matrix mentioned before from the inclusion of flexible demand
responsive loads are not a concern here. Still for large systems
this might be a time consuming step. This can by remedied by
observing that in step 2 of the algorithm Ĥ(d0) is computed
which is equivalent to optimizing the LP relaxation of problem
defined by equations (12) - (16) and thus provides a feasible
solution for the dual as well by LP optimality conditions [12].
Since the update in step 5 only changes the right hand side
of the constraints in this relaxation the solution to its dual LP
stays feasible because only the objective function of the dual
has been changed. Hence, steps 6 and 7 can be warm started
with the dual feasible solution from the previous iteration and
solved via the dual simplex method with a limited number
of pivots. Thus it is possible that step 2 might be slow, but
unlikely the computations in steps 6 and 7 will be, especially
as α decreases, if these observations are taken into account.
Additionally all evaluations of Ĥ in steps 6 and 7 can be
batched and done in parallel. Thus by leveraging parallelism
in step 3, 6, and 7 along with warm staring and duality in steps
6 and 7, computationally efficient implementations of the FW-
sample algorithm for solving the R-UCDR-FW problem are
possible.

IV. TEST CASE

To test the effectiveness the FW and FW-sample algorithms
for obtaining solutions to the UCDR problem, we conducted
a numerical study on the IEEE Reliability Test System (RTS-
GMLC) [14]. To represent flexible loads on the system we
allowed for a certain percentage of the load at each bus to be
a flexible self scheduling load. Thus there is one flexible load
a at each bus i on the system. We only require that for the
flexible load at bus i that

∑
t∈T s

t
a,i = δ

∑
t∈T d̂

t
i where d̂ti

is the original UC load at bus i at time t in the RTS-GMLC
system and δ is a parameter determining the percentage of load
that is self scheduling. In other words some percentage of the
load, defined by δ, at each bus can redistributed over the day
as long as it is all served. For our experiments we consider
cases where δ is set uniformly across all buses, and consider
the values δ = [0, 0.05, . . . , 0.45, 0.5].

Our implementations of the FW and FW-sample algorithms
were done in the Julia language and used the PowerSystems.jl
[15] and PowerSimulations.jl [16] ecosystem, an open-source

power grid modeling toolbox. These packages were used for
the construction of all power grid optimization models in our
work. The FICO Xpress Optimizer version 8.8.0. was used for
all computational experiments performed, and all MILPs were
solved to a 0.01% gap.

To establish a baseline to compare methods against we
solved the true UCDR problem for each δ. We then tested
the linear programming relaxation approach by solving the R-
UCDR for the same range of δ, fixing the resulting loads in
the UC problem. We ran the FW algorithm and FW-sample
algorithm each for 200 iterations on the full range of δ. All
runs of the FW-sample algorithm were done using 10 samples
taken from B∞(dk+1, ε) where ε =

√
α, in accordance with

[11]. 200 iterations were used because that was the number
of iterations that allowed the FW-sample algorithm to achieve
good results for most δ values. We also ran the FW algorithm
for 1000 iterations to see if it could match the FW-sample
algorithm’s performance with more iterations.

V. RESULTS

Savings observed from rescheduling flexible loads can be
seen in Fig 1. We observe from the UCDR line, the true
optimal solution, that the percentage of the UC cost saved
increased as more of the load at each bus is flexible, with
approximately a 25% reduction in cost when 50% of the load
at each bus is flexible. However, there is a reduction in the
relative benefit as the percentage of flexible load increases.

In Fig 2 we show the solutions obtained to the R-UCDR
problem via the FW and FW-sample algorithm in comparison
with the global solution to the R-UCDR. The numbers in
FW-200, FW-1000, and FW-sample-200 are the number of
iterations the algorithm was run. We see that the FW-sample-
200 performs similarly to the global R-UCDR solution for all
δ values considered up to 0.4. The FW-sample-200 matches
or out performs the FW-200 for all δ. The same is true is
when the FW-sample-200 is compared with FW-1000 with
the exception of the case when δ = 0.45. In the case when
δ = 0.45 we found that with 200 iterations the FW-sample
algorithm sometimes matched the performance of FW-1000,
and almost always did given 500 iterations. It is unclear why
the in this case the FW-sample needed more iterations, but in
general the FW and FW-sample began to struggle when the
percentage of flexible load approached 50%.

Fig 1 also shows how the flexible load schedules computed
in the experiments displayed in Fig 2 performed when used
in the full UC problem. With the exception of the R-UCDR
when δ = 0.45 the UC savings seem to be correlated with
the objective function values observed in Fig 2. The outlier
in the case of the R-UCDR with δ = 0.45 seems to suggest
an extreme sensitivity in the UC problem to the flexible load
profiles. This could be caused by the power imbalance slack
variables yt,±i being used, which are penalized at a cost of 106

$/MWh.

To show how the behavior of the FW-sample algorithm dif-
fers from the FW algorithm, in Fig 3 we show the progression
of the objective value for the two algorithms in comparison
with the R-UCDR objective value. We omit the first 10
iterations since they exhibit extremely large oscillations. This
figure shows that on average the FW-sample algorithm takes
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steps that lead to larger reductions in the objective value. They
also show that many more iterations of the FW algorithm are
needed to match the performance of the FW-sample algorithm.

Fig. 1. Percent of cost saved on the RTS-GMLC system in a 24 hour UCDR
problem with different percentages of flexible load.

Fig. 2. Solutions to the R-UCDR for RTS-GMLC system over 24 hours with
different percentages of flexible load.

Fig. 3. Convergence of the FW-sample over 200 iterations compared to the
FW with 1000 iterations when δ = 0.25, compared to the R-UCDR solution.

VI. CONCLUSION

We have shown that through reformulation of the UCDR
problem that the FW and FW-sample algorithms can be applied
to the R-UCDR problem. We have seen that the FW-sample
algorithm with a small number of samples can be used to
obtain high quality solutions to the UCDR problem. With this
approach, power system scheduling problems can represent the
centralized control of large numbers of flexible distributed en-
ergy resources, enabling DER value analysis on large, realistic
datasets. Future directions of research in this area include,
exploring larger scale test cases and a more complex set of
demand responsive loads, exploring sampling strategies for the
FW-sample algorithm, profiling parallel implementations, and
better understanding the behavior of the algorithm to determine
the cases where it is most applicable.
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