Evaluating material circular efficacy of waste-management scenarios using

— PV ICE (PV in the Circular Economy) tool
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on the ABM outputs. Recovery rates left at default values. In Current Recovery (S1), the loop remains mostly
- Ideal Recovery (S2): Recycling efficiencies replaced with Full Recovery open (see bars). In Ideal Recovery (S2), the loop is Increasing recycling effluenu»e§ tc_’ ideal value§ .
End-of-Life Photovoltaic (FRELP) [4] recovery rates. All recycled end-of- closed, with all recycled material going back into PV (ideal Recovery (52), dots) minimizes cumulative COI‘IC|USIOI1
life (EoL) materials reused for manufacturing. manufacturing (see dots). waste compared to Current Recovery (S1, bars).
- Reliability Same New Installs (S3): For relevant scenarios, reliability - Agreeing with results from the ABM, the landfill ban scenario minimizes waste. This intervention also
parameters modified to represent modules of different quality [5]. Installed Capacity demands the least virgin material when ideal recovery and closed loop values are assumed.
- Reliability Maintaining Capacity (S4): New installs modified so installed - Installed capacity, however, depends on reliability. Improving reliability not only maximizes installed capacity
capacity is maintained, compensating for lower reliabilities. Installed capacity, or the amount of active, generating PV in the field, remained the same between S1 and S2. but all other circularity metrics within a scenario when capacity is maintained.
*Each simulation includes all previous simulations’ sificati The installed capacity at 2050 was 0.77 TW for all scenarios, except for Improved lifetime, which had 0.95 TW. - However, mass circularity does not provide a complete picture. Further research is needed to understand
ach simulation includes all previous simulations’ parameter modifications This points to the importance of Reliability for maintaining renewable energy generation. energy and cost effectiveness of the given waste-management interventions.

Golden, CO: National Renewable Energy Laboratory. NREL/TP

NREL/PO-5K00-80715

Nature Energy 5






