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Abstract— More than $5 billion in investments in advanced 
metering infrastructure (AMI) technologies, AMI deployments, 
as pervasive secondary network voltage monitoring systems, 
provide opportunities for utility operations and controls. This 
paper focuses on the considerations for AMI-based tools and 
techniques as the industry moves toward operationalizing such 
large data sets. Phase identification is a first such tool. Numerous 
distribution network analysis, monitoring, and control 
applications—including volt/volt-ampere reactive control, state 
estimation, and distribution automation—require accurate phase 
connectivity information in the system models. The phase 
connectivity database maintained by utilities is inaccurate 
because of a significant amount of missing data, restoration 
activities, and network reconfiguration. Existing phase 
identification techniques that estimate phase connectivity work 
well in distribution feeders that have low or no photovoltaic (PV) 
generation; however, they fail to identify the phases accurately 
when considerable PV generation is present. This work addresses 
the phase identification problem in the presence of high PV 
generation using statistical analysis methods. Further, insights 
into the AMI data requirements for this application in terms of 
data window length and resolution are provided using sensitivity 
analysis performed on an actual distribution feeder model of San 
Diego Gas & Electric Company. The results of this study show 
that the phase connectivity, even in the presence of high PV 
generation, can be accurately identified using statistical analysis 
of AMI data of 1 day. 

Index Terms—advanced metering infrastructure, correlation 
coefficient, phase identification, power distribution lines, 
regression analysis. 

I. INTRODUCTION 
The utility industry has invested more than $5 billion in the 

deployment of advanced metering infrastructure (AMI) and 
customer solution technologies in the United States [1]. This 
investment has brought about important benefits to the utilities, 
including reduced costs for metering and billing, improved 
operational efficiencies leading to enhanced revenue collection, 
and improved outage management and restoration. Automated 
customer metering and billing is the prevalent use case for the 
AMI deployments. Remote connect/disconnect and outage 
management are also being widely used. Utilities in California 

use AMI data to estimate if the voltages are within the 
American National Standards Institute voltage limits for normal 
operations, especially in the presence of smart inverters [2].  

AMI deployments can provide measurements from the grid 
edge that can be indicative of system health and hence provide 
important insights into system operations. AMI-based analytics 
and controls present interesting challenges that need to be 
addressed for integration with traditional utility operations.  

Although utility operations (especially distribution 
automation controls) typically use supervisory control and data 
acquisition measurements from utility-owned meters, AMI 
measurements represent a very different class of meters. The 
size of AMI deployments (several hundreds of thousands of 
meters) and the long interval between meter reporting (5-
minutes for bellwether meters, even longer for non-bellwether 
meters) require its own class tools and techniques for utility 
operations and controls. Increasing levels of photovoltaic (PV) 
penetration add more challenges.  

This paper presents the challenges and considerations for 
AMI-based operational tools by studying the impact of factors 
such as length of data window, measurement resolution, and PV 
penetration. The paper focuses on phase identification 
algorithms and how their accuracy is affected by the factors 
identified. The study required developing frameworks for 
generating AMI-like data and for evaluating the effectiveness 
of different phase identification algorithms (identified through 
the literature survey in Section II). Section III presents the 
feeder model under study and the framework for generating 
synthetic AMI data. Section IV presents in detail the multiple 
linear regression technique for phase identification that has 
been prevalently used. Section V presents the sensitivity study, 
and Section VI concludes the paper with a discussion on future 
work.  

II. LITERATURE SURVEY 
AMI is a major milestone toward the vision of achieving a 

modernized electric grid. Substantial investments are being 
made by utilities to improve metering and the communications 
infrastructure. Outage management, power quality issues, 
integration of demand response, and distributed energy 
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resources (DER) [3] are some of the benefits of AMI. At the 
consumer level, smart meters communicate consumption data 
to both users and the service provider. Time-based pricing, 
consumption data, net metering, loss of power notification, 
remote turn ON/OFF, demand response, power quality 
monitoring, and communication with other intelligent devices 
are some of the functions of smart meters [4], [5]. Certain 
advanced functions on smart meters can be programmed to 
maintain a schedule for the operation of home appliances.  

An important application for AMI deployment is enabling 
the utility to maintain good models of the network. Traditional 
utility operations use network models for several operational 
and planning processes. Model accuracy is especially critical 
for utilities that use advanced distribution automation systems, 
such as an advanced distribution management system and an 
outage management system. Although model quality consists 
of several aspects, customer phase connectivity is of 
importance in numerous distribution network analysis, 
monitoring and control applications such as volt-var control, 
state estimation, and distribution automation.  

The operation of distribution systems with increased DER 
penetration requires accurate feeder models down to the point 
of interconnection. There is an increasing need to model the 
secondary low-voltage distribution circuits because the DERs 
are located at this level. An approach based on linear 
regression and basic voltage drop equations for phase 
identifications using smart meter data was proposed in [6], [7]. 
References [8], [9] proposed k-means clustering algorithm and 
hybrid clustering for phase identification using AMI data, 
respectively. Clustering based on the Pearson correlation 
coefficient and geographical location for phase identification 
was used in [10]. Principal component analysis and its graph-
theoretic interpretation was proposed by [11].  The phase 
identification problem formulated as an integer programming 
problem was proposed in [12]. Harmonic voltage correlation 
for phase identification was proposed by [13]. The majority of 
these works considered passive distribution networks to 
determine the phase connectivity. In this work, we demonstrate 
that the errors are introduced in the phase identification when 
PV generation is present in the distribution feeder. Further, we 
show that the statistical analysis can be used to determine the 
meter phase connectivity accurately even when highly 
intermittent PV generation is present with the AMI data of 1 
day. 

III. DISTRIBUTION FEEDER MODEL AND SYNTHETIC 
AMI DATA GENERATION PROCESS 

The study of phase identification accuracy using different 
statistical methods requires the availability of AMI data at 
desired locations, capturing the feeder response under different 
operating conditions, and reporting required feature data. It is 
important to identify the capabilities of each method of analysis 
because one method giving accurate results might not work 
reasonably well in a different system or under other operating 
conditions of the same system. However, since it is not practical 
in a distribution feeder to have AMI meters at all the locations 
providing required measurements at desired resolutions, the 
project team developed a framework to generate synthetic AMI 

data using a detailed distribution feeder model from a real 
feeder from San Diego Gas & Electric Company (SDG&E). 
The synthetic AMI data set is then used as input to different 
statistical methods to assess their phase identification 
performance. This approach is helpful in identifying the AMI 
data requirements and effective methods that work well under 
ideal conditions; therefore, the identified methods have the 
potential to use for this application. This section presents the 
details of the feeder model used and the procedure followed to 
generate the synthetic AMI data. 

It is assumed that all the smart meters are bellwether meters 
that can be polled every 5 minutes to obtain i) 5-minute average 
active power (kW), ii) 5-minute average reactive power (kvar), 
iii) 5-minute average per-phase voltage. They can be polled 
every 4 hours to obtain energy register data, energy interval 
data, and event data. Data collected by smart meters are a 
combination of parameters such as a unique meter identifier, 
time stamp of data, and the data mentioned previously. Non-
bellwether meters typically report every few hours with 
measurements of voltage and real and reactive power averaged 
over 15-minute time intervals. 

A. Distribution Feeder Details 
The topology of the distribution feeder model used in this 

work, plotted using the GridPV tool [14], is shown in Fig. 1. 
This is a 12-kV feeder serving 548 customers with a peak load 
demand of 10.3 MW. Distributed PV generation of 30% 
relative to the peak load is present in this feeder. One load tap 
changer (LTC) at the substation and three fixed capacitor banks 
are available for voltage regulation. The locations of the fixed 
capacitor banks and the PV systems are highlighted in Fig. 1. 

 
Fig. 1. Topology of the distribution feeder. 

Each phase at a given bus in this feeder is referred to as a 
node in this paper. Thus, a given bus on the feeder might have 
one, two, or all three phases/nodes. This feeder includes 4,213 
nodes total, excluding the nodes at the substation. The 
percentage distribution of nodes among the phases is 31%, 
34.5%, and 34.5% for phases A, B, and C, respectively. 
Identification of all the 4,213 nodes correctly represents 100% 
phase identification accuracy. 

B. Synthetic AMI Data Generation and Statistical Analysis 
The synthetic AMI data generation process is depicted in 

Fig. 2. The process begins with the simulation of the feeder 
model in OpenDSS in quasi-static time-series (QSTS) 
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simulation mode for a required time period (1 week/1 month) 
at a 1-minute time step resolution. The node voltage magnitudes 
and node real and reactive power demands including those at 
the feeder head (substation) are saved from the QSTS 
simulation as the synthetic AMI data. Thus, the original data set 
contains the AMI data at a 1-minute resolution. These data are 
then averaged over the required time intervals to generate the 
AMI data at different time resolutions as needed in the different 
scenarios discussed in Section V. For example, for data analysis 
with AMI data of the 5-minute resolution, the 1-minute AMI 
data are averaged over every five time steps. 

 

 
Fig. 2. Synthetic AMI data generation process. 

In QSTS mode, all the loads and PV systems are assumed 
to vary according to the load and PV profiles shown in Fig. 3. 
The load and PV profile measurement data are provided by 
SDG&E. Because the synthetic AMI data generated for a period 
of 1 week are used for most of the analysis presented in this 
paper, the corresponding profiles are plotted in Fig. 3. 

 
Fig. 3. Load and PV profiles of the 1-week period. 

Several scenarios are created by varying PV penetration 
levels and AMI data resolutions, and the corresponding data are 
stored in different data sets. The AMI data set of a given 
scenario is then passed to the statistical analysis module as input 
to apply multiple statistical methods using different feature sets 
for phase identification, as illustrated in Fig. 4. At all the nodes 
in the feeder, the identified phases are compared with the actual 
phasing information from the simulation model stored 
separately to check the accuracy of the results. 

 
Fig. 4. Phase identification through statistical analysis of AMI data. 

IV. PHASE IDENTIFICATION USING MULTIPLE LINEAR 
REGRESSION 

Initially, the multiple linear regression technique with the 
features reported in [6] is applied to the 1-month data set for the 
phase identification. In this, the 5-minute averaged 
measurement data of the node voltage, active power demand at 
the node, and active power demand at the feeder head are used 
as the independent variables to predict the voltage at the feeder 
head (dependent variable), as in (1): 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘0 + 𝑘𝑘1𝑉𝑉𝑛𝑛 + 𝑘𝑘2𝑃𝑃𝑛𝑛 + 𝑘𝑘3𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠              (1) 

where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 are the average voltage and average 
active power demand at a node at the substation; 𝑉𝑉𝑛𝑛 and 𝑃𝑃𝑛𝑛 are 
the average voltage and average active power demand at a node 
on the feeder (recorded by a fictitious AMI meter connected to 
that node); and 𝑘𝑘0, 𝑘𝑘1, and 𝑘𝑘2 are the regression coefficients. 

At each feeder node, three linear regression models are 
formed using the 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 data of the three nodes (phases 
A, B, and C) at the substation in (1). The regression models are 
then used to predict the corresponding substation node voltages, 
and the coefficient of determination (R2) for each fit is 
computed. The substation phase having the highest R2 is 
identified as the phase of that feeder node. This process is 
repeated for all 4,200+ nodes in the feeder for phase 
identification. 

The scatter plot of measured (data recorded from the QSTS 
results) substation node voltages and measured voltages at a 
selected feeder node are shown in Fig. 5 as blue dots. The 
substation voltages predicted by the regression model are 
marked by the red dots. Because there are more than two 
independent features in (1), only one feature is used for this plot 
for simplicity. Because both the feeder and the substation nodes 
pertaining to this plot are the same (Phase B), the red dots 
overlapping the blue dots represent an accurate fit. The R2 
value of this fit is 0.99. The distributed PV systems are not 
included in generating the AMI data used in this scenario. 

 
Fig. 5. Predicted substation voltages using multiple linear regression 

accurately matching with the measured values. 

Next, the AMI data generated by including the 30% existing 
PV generation are used for the regression analysis. The 
measured and predicted voltages of the same substation node 
are plotted against the measured feeder node voltages in Fig. 6. 
Compared to Fig. 5, we observed more errors in the predicted 
substation voltages in the presence of 30% PV generation. The 
prediction errors are primarily due to not capturing the PV 
generation in terms of measurable features. Thus, the regression 
models formed using (1) become inaccurate. As a result, the R2 
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value is reduced to 0.74 causing phase identification mismatch 
at this feeder node. Due to similar prediction errors at the other 
nodes, the phase identification mismatch increased from 0% in 
the no PV scenario to 15% in the 30% PV scenario when the 
multiple linear regression is used. 

 
Fig. 6. Errors in the predicted substation voltages using multiple linear 

regression in the presence of 30% PV generation. 

V. SENSITIVITY OF PHASE IDENTIFICATION 
ACCURACY TO VARIOUS PARAMETERS 

The AMI data analysis for accurate phase identification 
involves the employment of an appropriate analysis method, the 
selection of suitable features, and the use of a sufficient amount 
of data with good resolution. The impact of each parameter on 
the phase identification accuracy is studied to develop insights 
into the AMI data requirements for this application. In addition 
to the regression analysis discussed in Section IV, four 
statistical methods (M1 through M4) are tested with appropriate 
feature data for this study. The results are discussed here. 

A. How Much Data is Needed? 
The phase identification accuracy of a given method 

depends on the length of the data window used for the analysis. 
To study the amount of data required for each statistical 
method, the data window length used for the analysis is varied 
in 1-hour increments, and the phase identification accuracy of 
different methods for each variation is plotted in Fig. 7. It is 
observed that all the methods except Method 4 could identify 
all the phases correctly with only a data window length of only 
3 hours. Table I. shows the results when the window lengths of 
1 week and 1 month are used, and it confirms the robustness of 
these methods to the data set containing normal system events 
such as load variations and LTC tap changes. Further, it is 
evident that 1-day AMI data at a 5-minute resolution can be 
sufficient under ideal conditions for accurate phase 
identification when PV is not present. 

 
Fig. 7. Sensitivity of phase identification accuracy to data window length. 

TABLE I.  PHASE IDENTIFICATION MISMATCHES FOR DIFFERENT DATA 
WINDOW LENGTHS 

Window 
Length LR M1 M2 M3 M4 

1 week 0% 15% 0% 0% 53% 
1 month 0% 15% 0% 0% 53% 
 
Next, the existing PV generation in the feeder, which is 30% 

relative to the peak load, is added to the system to study the 
impact on the performance of the selected methods. The results, 
shown in Fig. 8, indicate that the phase identification accuracy 
is significantly reduced when the feeder has considerable levels 
of PV generation. Specifically, the linear regression with the 
feature set reported in [6] no longer provides accurate results 
with the 1-day data set; however, Method 3 works well with the 
same data set even in the presence of PV generation. To study 
if the supply of more data results in the improvement of phase 
identification accuracy, the data window length is increased to 
1 week and 1 month. The results, shown in Table II. reveal that 
the increase in data window length does not necessarily 
improve the accuracy of these methods as the mismatches did 
not reduce when 1-month data window length is used compared 
to when 1-week data set is used. Method 3 consistently 
provided accurate results with the longer data windows.  

 
Fig. 8. Impact of the existing PV generation in the feeder on phase 

identification accuracy. 

TABLE II.  PHASE IDENTIFICATION MISMATCHES WITH 30% EXISTING 
PV GENERATION IN THE FEEDER 

Window 
Length LR M1 M2 M3 M4 

1 week 15% 16% 12% 0% 52% 
1 month 15% 16% 12% 0% 52% 
 

B. How Do PV Generation Levels Impact Accuracy? 
Sections IV and V-A showed that PV generation can cause 

phase identification errors. This section studies the performance 
of the different methods as the PV penetration levels are varied.  

The feeder model without any PV systems is considered as 
the baseline scenario. Then PV systems are added to the 
customers selected randomly from the set of all customers. The 
size of the PV systems at each location is selected randomly 
between 0 kW and 50 kW. For the 10% PV penetration level, 
the PV systems are added in this way until the total active power 
output of the PV systems is less than or equal to 10% of the 
peak load demand of the feeder. This process is repeated for the 
other PV penetration levels. 

The AMI data are generated for each PV penetration level 
through the QSTS simulation of a 1-week period. Statistical 
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analysis is performed on the 5-minute averaged data of this 
period for phase identification. The results are shown in Fig. 9. 
It is observed that the linear regression provided accurate results 
up to 20% PV penetration level beyond which errors are 
introduced in the phase identification. Method 3 gave 100% 
accurate phase identification results for all the PV penetration 
levels. Method 2, with small percentage of errors at some PV 
penetration levels, also found to be promising with low phase 
identification mismatches.  

 
Fig. 9. Sensitivity of phase identification accuracy to PV penetration levels. 

C. How Granular Should the AMI Data Be? 
To study the requirements of AMI data granularity, the 

impact of different AMI data resolutions on phase identification 
accuracy is studied. To generate synthetic AMI data at different 
resolutions, data averaging is performed at different time 
intervals on the AMI data set generated without the PV systems 
in the feeder. The time intervals considered are 1 minute, 5 
minute, 10 minute, 15 minute, and 30 minute. Because the AMI 
data of the 1-week window length was found to be sufficient 
for obtaining accurate results, as shown in Section V-A, 1-week 
data are used for this analysis. The phase identification 
mismatches for data with different resolutions are plotted in 
Fig. 10. The results show that all the methods are mostly robust 
to the changes in the AMI data resolution. The phase 
identification mismatches remained constant as the data 
resolution reduced from 1 minute to 30 minutes, except for 
Method 2 which showed slight increase in the errors. 

 
Fig. 10. Sensitivity of phase identification accuracy to AMI data resolution. 

VI. CONCLUSIONS AND FUTURE WORK 
Existing phase identification techniques work well in the 

distribution feeders having low or no PV generation. They fail 
to identify the phases accurately when considerable PV 
generation is present as the features used in these methods 
ignore the impact of PV generation in forming the voltage 
prediction models. In this work, the phase identification 
problem in the presence of high PV generation is addressed. 
The feasibility of accurate phase identification in the presence 
of high PV generation using statistical analysis is demonstrated. 

Further, insights into the AMI data requirements for phase 
identification in terms of data window length and resolution are 
provided. Future work involves the application of the studied 
methods on the AMI data recorded in the field for accurate 
phase identification. 
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