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Executive Summary  
The midscale market for solar photovoltaics (PV), defined as behind-the-meter systems between 
100 kW and 2 MW, has grown more slowly than other PV market segments in recent years. 
Cumulatively, of the nearly 26 GW of collectively installed PV capacity, non-residential systems 
represent only 6.2 GW—24% of the total. A number of key barriers have impeded growth, 
including tenant and landlord split incentives, contracting challenges, the mismatch in building 
lease and PV financing terms, and high transaction costs relative to project sizes.  

This report explores prospects for expansion of the midscale solar market, with a focus on four 
building segments: offices, hotels, warehouses, and universities. These building segments were 
selected based on their ability to deploy solar if key barriers were removed or mitigated.  

 

Figure ES-1. National PV demand curves for offices, hotels, and warehouses 

At 2015 average (50–100 kW) installed prices ($3.20/WDC), the techno-economic potential for 
these building segments is substantial, at 44 GW (Figure ES - 1), with approximately half of that 
capacity coming from offices (22 GW). With further price declines on par with the with the U.S. 
Department of Energy’s (DOE’s) SunShot Initiative’s 2020 targets, the techno-economic 
potential for these three segments could reach more than 100 GW. Techno-economic potential is 
an estimate of the total capacity that exists where system owners would break even on an 
investment in PV over the lifetime of the system.1 These estimates are derived from a new 
analysis that takes into account lidar2 data, building type counts, simulated load profiles, and 
utility rates from the Utility Rate Database (URDB).3 

This analysis shows the following average trends for the four midscale solar segments examined 
in this report. However, findings for individual buildings in these segments may differ, given that 
the local retail rate structure is one of the most important drivers of the value of PV.  
                                                 
1 The analysis assesses siting restrictions associated with roof area, shading, and other characteristics, but does not 
consider the age of the roof, institutional or financing barriers, or the structural ability of the building to 
accommodate PV.  
2 Lidar is a geographic surveying technology that works on the same principal as radar, except it images surfaces 
using light instead of sound. The data is used here to determine the suitability of rooftops for hosting PV systems. 
3 The Utility Rate Database provides rate structure information for more than 3,700 U.S. utilities. The database is 
available at http://en.openei.org/wiki/Utility_Rate_Database.  

http://en.openei.org/wiki/Utility_Rate_Database
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Offices 
• Offices have a techno-economic potential of 22 GW at 2015 average installed prices and 54 

GW at DOE’s SunShot 2020 targets.  
• Peak demand typically occurs during daylight hours, providing the opportunity to reduce 

demand charges.  
• Enabling aggregate purchases by multiple tenants or subscribing to power purchase 

agreements (PPAs) from an offsite PV array could minimize transaction costs. 
 
Hotels 
• Hotels have a techno-economic potential of 6 GW at 2015 average installed prices and 

16 GW at DOE’s SunShot 2020 targets. 
• Peak demand can often occur outside of daylight hours, where PV has no ability to reduce 

demand charges.  
• While hotels often only have one tenant, financing can be more complicated due to complex 

franchise structures.  
• Because hotels are consumer-facing, they can directly market their sustainability efforts more 

than offices and warehouses. 
 
Warehouses 
• Warehouses have a techno-economic potential of 15 GW at 2015 average installed prices and 

34 GW at DOE’s SunShot 2020 targets.  
• Warehouses often have large unobstructed roofs that offer significant potential, but they 

otherwise have bill savings capabilities on the same order as offices.  
• Minimizing transactions and developing solutions to the tenant/landlord split incentives, 

similar to offices, could help move the segment. 
 
Universities 
• A different methodology was used to estimate market potential for universities because of 

differences in available data. We estimate that if all universities deployed enough distributed 
PV to generate 25% of their annual electricity consumption, the total capacity would be 
slightly more than 16 GW. Much of this capacity would have a relatively low value 
compared to the aforementioned sectors, but 3.7 GW of the capacity would be “high 
value”—capacity whose average bill savings would exceed 10¢/kWh of electricity generated.  

• In general, universities have potential to significantly expand their use of PV because of their 
large techno-economic potential, strong interest in sustainability, and land availability. 
However, a key challenge is educating decision makers about solar financing and contracting 
processes. 

To realize substantial growth in the midscale sector in coming years, a number of strategies 
could be pursued to address key barriers. Based in part on discussions with market participants, 
options for facilitating increased deployment in the midscale market include: wider adoption of 
property-assessed clean energy (PACE) financing, virtual net metering, policies enabling use of 
third-party PPA financing, targeted educational efforts in promising market segments, and efforts 
to reduce transactional costs (i.e., simplifying interconnection, standardized contracts). 
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1 Introduction 
The midscale solar market—loosely defined as behind-the-meter systems between 100 kW and 2 
MW—has grown more slowly than the residential and utility-scale market segments in recent 
years. While data on installations in the midscale market, or midmarket, specifically are not 
available, the Solar Energy Industries Association (SEIA)/GTM Research data on non-residential 
installations4 shed light on the trends in this sector. In 2015, non-residential solar photovoltaic 
(PV) projects represented only 14% of the total installed PV capacity in that year and megawatts 
installed in the non-residential sector have been stagnant for the past three years (SEIA/GTM 
2016). Cumulatively, of the nearly 26 GW of collectively installed PV capacity, non-residential 
systems represent only 6.2 GW—24% of the total. A recent analysis of lidar data estimated there 
is the potential for 232 GW of PV capacity on large buildings in the United States, showing a 
significant untapped market for midscale solar (Gagnon et al. 2016).5 The midscale solar market 
has many barriers, including landlord and tenant split incentives, site restrictions, financing 
challenges, and high transaction costs that make the economics less attractive than for larger 
system systems.  

This paper explores the potential for expansion of the midscale solar market by considering the 
economic potential for PV adoption as well as the barriers to and opportunities for PV 
deployment. In this analysis, we focus on four building segments: offices, hotels, warehouses, 
and universities.6 These segments were selected based on their ability to deploy solar if key 
barriers were removed or mitigated. For each of our four segments, we explore key barriers (e.g., 
tenant and landlord issues, contracting challenges, transaction costs) and opportunities (e.g., 
favorable economics, potential for demand charge savings, interest in achieving sustainability 
goals), based on economic analysis of building loads and rates and interviews with key 
stakeholders, including installers, financiers, and representatives in these segments. Earlier 
studies also examined the challenges and potential solutions for installing solar PV on leased 
buildings and the hospitality sector (Navigant Consulting 2015a; Navigant Consulting 2015b).  

In this analysis, we also estimate the economic potential for PV deployment in each of these four 
building segments. The analysis uses new methods to generate a demand curve to show the 
breakeven price of solar in each segment, up to the maximum that the building segment can 
support.7 We build our model of economic potential using lidar data, building type counts, 
simulated load profiles, and utility rates from the Utility Rate Database (URDB).8 This work 
builds on earlier National Renewable Energy Laboratory (NREL) analyses of the technical 
potential for PV adoption and breakeven analysis in commercial buildings (Gagnon et al. 2016; 
Davidson et al. 2015; Chung et al. 2015).  
                                                 
4 SEIA/GTM defines “non-residential” as installations where the off-taker is neither a homeowner nor a utility.  
5 Large buildings were defined as having a footprint that exceeded 25,000 ft2. Assuming a module power density of 
160 W/m2, ground coverage ratio of 0.7, and taking into consideration the typical fraction of roof area suitable for 
PV deployment, a typical 25,000 ft2 roof could host up to approximately 150 kW of PV. 
6 We use the term “university” to refer to the larger higher education sector.  
7 The demand curves consider both the potential capacity that could be built based on the building structure and 
local solar resource as well as the economics of the system in light of electricity consumption patterns of the host 
building and utility electricity tariffs. 
8 The Utility Rate Database provides rate structure information for more than 3,700 U.S. utilities. The database is 
available at http://en.openei.org/wiki/Utility_Rate_Database. 

http://en.openei.org/wiki/Utility_Rate_Database


2 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

In the first section of this paper, we explore available data on PV installation trends to better 
understand PV adoption patterns in the four market segments on which we are focusing: offices, 
hotels, warehouses, and universities. Then, we explore the economic potential for PV adoption in 
each of these market segments in the United States. Next, we discuss key barriers to adoption to 
date, some of which are common across market segments, as well as opportunities for 
accelerated PV adoption based on interviews and feedback from industry participants. Finally, 
we conclude with a discussion of steps that could be taken to reduce barriers to adoption and 
enable accelerated adoption of PV in the segments examined. 
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2 Status of the Midscale PV Market  
There are many ways to slice the “midscale” solar market. Because one comprehensive data set 
on the midscale PV market does not exist, we present a snapshot of available data in this section.  

For a high-end estimate of the midscale market, we use SEIA/GTM’s non-residential category, 
which is defined by the off-taker. Systems in which the off-taker is not a homeowner or a utility 
are by default defined as “non-residential.” In 2015, the non-residential market totaled 6,100 
MW (24%) of capacity, compared to 5,600 MW in the residential sector and 13,900 MW in the 
utility sector (SEIA/GTM 2016).  

Data are also available from the Tracking the Sun report (Barbose and Darghouth 2016), which 
reports solar PV system and price data derived from state and utility incentive programs, solar 
renewable energy credit registration systems, and interconnection programs. The data represent 
more than 80% of the residential and non-residential markets to date and cover the entire 
residential sector and all non-residential roof-mounted systems as well as non-residential ground 
mounted systems up to 5 MWAC. Tracking the Sun data are available by system size. Using a 
midscale market definition of 100 kW to 2 MW, data show 3,300 MW of midscale cumulative 
PV capacity installed by 2015, representing 34% of installed residential and non-residential 
capacity defined in the Tracking the Sun data set (Figure 1).  

 

Figure 1. Cumulative capacity of small, midscale, and large installations in the Tracking the Sun 
data set 

Data are sourced from Tracking the Sun (Barbose and Darghouth 2016). 

This midscale market estimate is smaller than GTM’s non-residential estimate because it 
includes a more limited set of project sizes and draws from a smaller data set of PV installations 
(Figure 2). Both data sets are presented in order to give the most comprehensive picture of 
midscale solar.  
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Figure 2. Comparison of cumulative capacity in Tracking the Sun versus SEIA/GTM 
a Utility scale cumulative installation are from Bolinger and Seel 2016. 

2.1 Customer Types 
Some additional state data are available from GTM on the customer types in the non-residential 
market. Looking at data from Arizona, California, New York, Massachusetts, and New Jersey, 
GTM found that the breakdown of whether a project was either commercial and industrial, or 
included in the school, government, and nonprofit category was highly dependent upon the state, 
as a result of how incentive programs are structured (SEIA/GTM 2015). In 2014, school, 
government, and non-profit installations represented 42% of non-residential installations in these 
states (Figure 3). In Arizona and California, non-residential installations were concentrated in the 
school, government, and nonprofit sector. The California Solar Initiative (CSI) provided a higher 
incentive for government and nonprofits than for commercial systems.9 However, in New York, 
commercial and industrial installations represented the vast majority (84%) of non-residential 
installations in 2014 (Figure 3).  

 

                                                 
9 CSI’s performance-based incentives for government/nonprofits ranged from 6–11¢/kWh greater than commercial 
incentives over the course of the CSI program. 
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Figure 3. Share of non-residential installations in Arizona, California, New York, Massachusetts, 

and New Jersey 

Source: SEIA/GTM 2015  

About 50% of midmarket projects in the Tracking the Sun data were classified as “commercial,” 
followed by government (21%) (Figure 4). About 8% of the midmarket projects are “school” 
projects, which are not further broken down into higher education projects. School projects tend 
to be slightly smaller than other midmarket projects; about 313 kW on average, compared to 
about 383 kW for other midmarket projects. School projects are also less likely to be ground-
mounted; about 86% of school projects are rooftop, compared to about 70% of other midmarket 
projects. 

 

Figure 4. Share of midscale installations  
Data are sourced from Tracking the Sun (Barbose and Darghouth 2016). 

Data represent system sizes of 100 kW–2 MW; residential systems may represent multi-unit housing 
applications or potentially are misclassified. 
 
The U.S. Environmental Protection Agency (EPA) also tracks solar installations for the 
institutions that participate in its Green Power Partnership program, which is a voluntary 
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program of green power purchasers that currently has more than 1,300 participants using more 
than 30 million MWh annually of renewable energy, including solar. Of the participants in 
EPA’s Green Power Partnership, the largest sectors with onsite solar in 2015 were retailers, 
technology and telecom companies, and local governments (Figure 5). Importantly, the EPA’s 
Green Power Partnership includes only onsite solar projects where the renewable energy 
certificates (RECs) have been retained by the purchaser, so not all installed PV is counted in 
these estimates.  

 

Figure 5. Share of onsite solar by participants in EPA’s Green Power Partnership 

Source: EPA 2015  

Data on the four building types we evaluate (offices, hotels, warehouses, university campuses) 
are more limited. Some data are available for offices, warehouses, and universities, but there is 
no current data source for PV installed at hotels. SEIA’s Solar Means Business (SEIA 2015) 
report,10 which documents commercial PV systems installed by corporations, included 92 
systems on offices and corporate campuses totaling 72 MW, with an average system size of 782 
kW. The report also documented 131 PV systems on distribution centers and warehouses totaling 
196 MW, with an average system size nearly double that for offices and corporate campuses, at 
1.5 MW.  

Universities self-report data on installed PV systems to the Association for Advancement of 
Sustainability in Higher Education (AASHE). According to the AASHE data, universities and 
colleges had installed more than 250 MW of solar as of August 2016, although the self-reported 
data cannot be considered comprehensive. Of the total reported, there were 584 installations on 
333 campuses in 46 states and Washington, D.C., with an average capacity installed of 386 kW. 
These figures include all installations at universities; when limiting installations to only 100 kW 
and up, there are 212 MW in 26 states and Washington, D.C., but only 225 projects.  

                                                 
10 SEIA’s data set draws from voluntary responses by Fortune 100 companies, additional businesses known to have 
significant installed solar capacity, and public databases.  

0 100,000 200,000

Govt. (Federal)

Automotive

Food & Beverage

Office and Warehouse

Education (K-12)

Health Care

Education (Higher)

Govt. (Local, Municipal)

Technology & Telecom

Retail

MWh of onsite solar



7 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

2.2 Midmarket Pricing 
Information on installed PV system prices in the midmarket segment is available from both 
SEIA/GTM and Tracking the Sun. According to modeling by SEIA/GTM, U.S. average PV 
system pricing in the non-residential sector has trended downward from $2.27/WDC in Q3 2014 
to $2.07/WDC in Q3 2015 (SEIA/GTM 2015). GTM also provides data from state incentive 
program; in those cases, pricing ranged from as low as $1.81/WDC (Texas) to $5.20/WDC 
(Minnesota). Minnesota, Washington, and Wisconsin saw higher prices due to their low volumes 
and incentive program limits on the size of commercial projects (SEIA/GTM 2015).  

Using Tracking the Sun data, midmarket prices follow the same trends as the rest of the DG 
market, falling between average prices for small and large projects. The mean midmarket price 
was about 28% lower ($1.28/W) than the average small project and about 14% higher (41¢/W) 
than the average large project in 2015 (Figure 6). 

 

Figure 6. Monthly mean prices by market, 2004–2016  

Data are sourced from Tracking the Sun (Barbose and Darghouth 2016). 

Large projects are excluded until 2013 due to the very low number of such projects installed before 2013.  
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3 Technical and Economic Potential for Midscale PV 
Market Sectors  

This section presents estimates of the techno-economic potential for PV on the four building 
segments that are the focus of this analysis: offices, hotels, warehouses, and universities. These 
sectors were selected based on a number of criteria, including: availability of building data, 
expected time to deploy solar, ability of stakeholders to assist in dissemination of educational 
and other materials, and public benefits of deployment in the market segment.  

The estimates are based on demand curves derived for each building class, which characterize 
the amount of PV that customers in each building sector would be interested in purchasing as a 
function of the installed system price.  

The demand curves consider both the potential capacity that could be built based on the building 
structure and local solar resource as well as the economics of the system in light of electricity 
consumption patterns of the host building and utility electricity tariffs. In this way, the demand 
curves indicate how much capacity could be built that would achieve a certain level of economic 
performance. The technical potential for PV installations on offices, hotels, and warehouses is 
based on their available roof space (see Section 3.1), while a modified approach is used for 
universities because of their larger land area and ability to site PV in other areas within the 
campus and other differences described below (see Section 3.2). 

3.1 National Technical and Economic Potentials on Offices, Hotels, 
and Warehouses 

The technical potential of each building class, which is the upper limit on the capacity that could 
be installed regardless of price, is 61 GW of PV on offices, 22 GW on hotels, and 37 GW on 
warehouses (Figure 7).11 Technical potential corresponds to the left most point of each of the 
curves—the quantity of capacity that would break even if the installed price were zero. 

                                                 
11 These curves are derived from the simulation of over 40,000 representative buildings, with characteristics and 
frequencies informed by the Commercial Building Energy Consumption Survey, lidar analysis of rooftop trends, 
over 3,000 commercial electricity tariffs, and PV performance modeling. See Section 3.3 for details on 
the methodology. 
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Figure 7. National demand curves for rooftop PV on offices, hotels, and warehouses 

Figure 7 shows the quantity of PV capacity that would exactly break even—meaning the present 
value of the discounted profits would equal the present value of the discounted costs—as a 
function of the installed price.12 For instance, the average price of PV for non-residential systems 
between 50 and 100 kW installed in 2015 was $3.20/WDC (Barbose and Darghouth 2016). At this 
price, 22 GW of PV would break even on offices, 15 GW on warehouses, and 6 GW on hotels. 
Therefore, at this price, the percent of the total technical potential that would break even is 37% 
for offices, 41% for warehouses, and 30% for hotels. If installed PV prices were to continue to 
fall while electricity prices remained constant, the amount of PV capacity that would break even 
would increase substantially. For example, at DOE’s SunShot Initiative’s installed price target 
for 2020 of $1.38/WDC

13 and at current electricity prices, 16 GW of capacity on hotels would 
break even, 34 GW on warehouses, and 54 GW on offices.14 

It should be noted that the capacity estimates are only a reflection of the point at which an 
investment in PV would break even. Capacity estimates do not necessarily reflect whether a 
building owner would ultimately decide to undertake a PV project. The requirements of certain 
entities might be higher if they have minimum hurdle rates for investments, or it might be lower 
if they consider a PV system to have value beyond its bill reduction potential. 

                                                 
12 The analysis assumed a system financed with a 6.5% annual percentage rate, 80% debt fraction loan, a real 
discount rate of 6.5%, and future electricity price projections from the EIA’s Annual Energy Outlook. 
13 The SunShot target for 2020 was originally $1.25/WDC in 2010 dollars, but it has been converted to 2016 dollars 
using the Bureau of Labor Statistics Consumer Price Index calculator.  
14 These high fractions of potential capacity breaking even are based on the price and structure of electricity tariffs in 
2016. In a future with extremely low-cost PV, it is likely that the amount of equally-low-priced utility-scale PV 
deployment would be significant enough to prompt changes in the structure or magnitude of retail tariffs. 
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The breakeven point of PV is a useful metric for gauging the state of the market, but it includes 
embedded assumptions about financing and future electricity prices. An alternative metric is the 
average first year bill savings of the PV system, in terms of cents of bill savings per kilowatt-
hour of electricity produced. This is useful for a rough characterization of the prices that could be 
set for power purchase agreements (PPAs).  

Figure 8 shows a national demand curve for each building class in terms of the average first year 
bill savings. For example, a PPA that offered electricity at 10¢/kWh would have its first-year 
cost equal the resulting first-year bill savings for 20 GW of office capacity, 13 GW of warehouse 
capacity, and 6 GW of hotel capacity (see Figure 8). Whether the PPA would result in lifetime 
bill savings would be influenced by the PPA’s escalation, electricity price changes, and any 
evolutions in electricity tariffs. 

 

Figure 8. First year bill saving demand curves for offices, hotels, and warehouses 

3.2 National Technical and Economic Potential on Universities 
Universities have several characteristics that set them apart from most potential distributed PV 
customers. With respect to their technical potential, their large size typically offers significant 
potential for rooftop, parking canopy, and ground-mounted PV. Less intuitively, the electricity 
consumption of entire campuses are often aggregated and billed through one meter. This 
aggregation strengthens the financial value of PV because PV generation from any location on 
campus can influence the total load and decrease the demand charges more efficiently than if the 
generation was only influencing the load of a single building. Despite these advantages, many 
universities are on special electricity tariffs with low rates or large customer general service 
tariffs with large demand charges. Both of these factors decrease the solar value proposition.  
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3.2.1 National Demand Curve for Behind-the-Meter PV on Individual Universities 
Unlike the analysis performed for offices, hotels, and warehouses, our analysis of the university 
technical potential did not restrict the amount of PV by the availability of rooftop or land area. 
Rather, in constructing the demand curve for each individual university we evaluated a quantity 
of PV up to the amount that would generate 25% of the annual consumption of electricity from 
the campus. This is much larger than historically typical installations, which often only provide 
several percent of a university’s annual electricity consumption—but is nonetheless shown here 
in order to explore a broad possible space.  

The national demand curve for distributed PV on universities is shown in Figure 9. This shows 
that if every university in the nation deployed distributed PV up to a capacity that would generate 
25% of their annual electricity consumption, the total capacity would be slightly greater than 16 
GW.  

The demand curve is characterized by two regions. The first region, on the far left, is a quantity 
amount of high-value capacity. This corresponds to the capacity that would, in addition to 
decreasing energy consumption charges, also be able to efficiently decrease the host university’s 
demand charges. The detail box of Figure 9 shows that we estimated approximately 3.7 GW of 
potential distributed PV capacity that would result in average bill savings greater than 10¢/kWh. 
This high value capacity is spread out in pieces of 100’s of kWs across many universities in the 
U.S.’s stock.  

The second region of Figure 9 is the broad, flat region extending from approximately 4 GW to 16 
GW. This region corresponds to the capacity that would primarily be offsetting energy 
consumption charges, and is therefore of less value than the first region.  

The methodology for generating the national university demand curve is discussed in 
Section 3.4. 

 
Figure 9. National demand curve for behind-the-meter PV on universities 
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3.3 Demand Curve Methodology for Offices, Hotels, and Warehouses 
This section gives a brief narrative description of the method and key assumptions used to create 
the demand curves for offices, hotels, and warehouses. The methodology used for universities 
differed; it is given in Section 3.4. 

3.3.1 Modeling Potential PV Customers 
To start the analysis of technical potential for commercial buildings, we needed to model the 
quantity and characteristics of the different potential PV customers within each of the building 
classes. First, we determined electricity consumption patterns of each of the buildings, which 
vary by season and region. For that, we turned to a previous effort at NREL that had simulated 
annual hourly load profiles for common commercial buildings for approximately 1,000 sites 
across the nation.15  

Second, we examined roof area, which can be derived from floor space and the number of floors. 
Data on the national distributions of those characteristics for our segments are given in the U.S. 
Energy Information Administration’s (EIA’s) Commercial Building Energy Consumption 
Survey. For example, there are an estimated 230,000 offices with 5,001 to 10,000 square feet of 
floor space. Of buildings that size, 68% have one floor, 24% have two floors, 6% have three 
floors, and 1% have four floors (EIA 2016a). Combining those two characteristics provides the 
building’s roof area, but not how much of it is suitable for PV deployment. For that, we used 
data from another previous NREL effort that leveraged lidar data to characterize the suitability of 
rooftops across the nation.16 We then combined these characteristics with the aforementioned 
electricity consumption profiles to create a set of more than 40,000 representative buildings with 
characteristics that represent national trends.  

3.3.2 Curating Electricity Tariffs 
That effort gave us a set of representative buildings, but in order to construct the demand curves, 
we still needed to determine the economics of PV for each of the buildings. Because commercial 
buildings tend to have complex tariff structures that significantly influence the value of PV, we 
used actual tariff structures—instead of simpler estimation methods like the average price of 
electricity. We curated a set of tariffs from the URDB. After cleaning the data set of errors and 
removing irrelevant entries, more than 3,000 commercial tariffs for over 300 utilities remained. 
In total, this set of tariffs covers 49% of the megawatt-hours of electricity sold to the commercial 
sector (EIA 2016b). We assumed this tariff set was representative of the behind-the-meter value 
of PV across the nation, and therefore extended the relevant economic metrics to regions not 
covered by the tariff set.  

3.3.3 Modeling PV Performance  
Using NREL’s System Advisor Model (SAM) (Blair et al. 2014) and typical meteorological 
weather data (Wilcox and Marion 2008), we then determined the productivity of PV on each of 
                                                 
15 See http://en.openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-
locations-in-the-united-states. 
16 The suitability of roof area for hosting a PV system was determined by four criteria, as discussed in Gagnon et al. 
(2016). The roof area could not be facing north, not be excessively shaded, not tilted more than sixty degrees, and 
consist of at least 10 m2 of contiguous area. 

http://en.openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
http://en.openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
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the representative buildings. We then evaluated the price of electricity with and without the PV 
system for each building, and determined the bill savings from PV as the difference between the 
least cost tariffs in both scenarios.17  

3.3.4 Evaluating Economic Performance 
We then evaluated the relevant financial metrics, which vary as appropriate throughout this 
report. The most common is the breakeven point—the total installed price at which PV will 
exactly pay itself off over the assumed lifetime of the system. To evaluate the breakeven point, 
we projected the annual bill savings over the lifetime of the system and used standard discounted 
cash flow modeling to determine what initial price would have resulted in a net present value of 
exactly zero. Bill savings were calculated as the difference between the lowest cost of electricity 
without PV against the lowest cost of electricity with PV for all tariffs available to a given 
customer—meaning that we represented the potential to switch tariffs in the analysis. 
Furthermore, because the bill savings of PV varies depending on how much PV there is on the 
building already, we modeled the financial performance of many different PV sizes. Therefore, 
our following analysis can capture instances where a 50 kW PV system on a large office may 
have a positive net present value, even when a 250 kW system on the same office would not 
have broken even.  

3.3.5 Aggregating the Results into Demand Curves 
The individual results for each of our 40,000 representative buildings were then aggregated into 
national demand curves, where the contribution of each simulated building was weighted by the 
number of actual buildings it represented. 

3.4 Demand Curve Methodology for Universities 
Because of differences in data availability, the process for constructing a national demand curve 
for universities differed from the method for offices, hotels, and warehouses, which was 
described in Section 3.3. Unlike the other building classes, we did not have the data to construct 
a large set of representative universities. Instead, we used data from seven actual universities to 
characterize the value of PV for those universities as a function of the quantity of PV installed on 
campus. By normalizing the results against the state’s average price of electricity and the 
university’s enrollment, we identified a general trend that, in combination with each state’s 
electricity rates and enrollment numbers, enabled an estimate of the nation’s total demand curve. 

3.4.1 Constructing Individual Demand Curves for a Set of Universities 
We obtained the energy consumption profiles for seven individual universities.18 Using SAM, 
we evaluate the average reduction in annual electricity bill per kWh of PV-generated electricity. 
Two of the universities were on special tariffs for educational institutions—which had less 
expensive rates—and the rest were on the local utility’s version of a General Service tariff for 
large customers.  

                                                 
17 When selecting what tariffs a building could subscribe to, we respected eligibility criteria such as minimum and 
maximum peak demand or energy consumption. 
18 Because of the sensitivity of the data, the universities will remain anonymous.  
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The resulting curves are shown in Section 4.3.2, and accompanied by a discussion of how the 
value of PV tends to decline for universities as the capacity of installed PV grows.  

3.4.2 Calculating a Normalized Demand Curve for Universities 
Each of the individual demand curves for the universities showed similar shapes, indicating the 
opportunity to normalize them and create a general trend that could be applied to a larger set. 
First, the cents-per-kilowatt-hour value of PV was normalized by the average price of electricity 
for the industrial sector in each university’s state (EIA 2016b). The amount of capacity available 
at each normalized value was then summed together across all seven universities. Lastly, the 
capacity value of the aggregated curve was then normalized by the total full-time equivalent 
students between all seven universities. The result was a generalized demand curve that reflected 
the normalized value of PV as a function of the number of full-time equivalent students in a 
portfolio of schools. 

3.4.3 Calculating a National Demand Curve for Universities 
Having developed a normalized demand curve for universities, we could generate a demand 
curve for each state in the nation by multiplying the capacity of the curve against the number of 
full-time equivalent students in the state, and the PV-value by the average price of electricity in 
each state.19 We then aggregated the state curves into a single national curve (Section 3.2). 

3.5 Key Limitations and Assumptions 
The key assumptions used in the construction of the demand curves are listed in Table 1 and 
Table 2.  

Table 1. Technical Assumptions used in Demand Curve Generation 

Characteristic Value 

System Size Constrained by suitable roof area 

Module Type Multicrystalline silicon 

Module Power Density 160 W/m2 

Tilt 15 degrees 

Azimuth 180 degrees (south facing) 

Ground Coverage Ratio 0.70 

Total System Losses 14.08% 

Module Degradation 0.75%/year 

Inverter Efficiency 95% 

DC to AC Ratio 1.4 

                                                 
19 State-level enrollment data was obtained from Table 304.10 of the Digest of Education Statistics, and the average 
price of electricity in the industrial sector was obtained from EIA Form 861 (EIA 2016b). 
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Table 2. Financial Assumptions used in Demand Curve Generation 

Assumption Value 

Project lifetime 25 years 

Loan Term 20 years 

Loan Rate 6.5% (real) 

Debt Fraction 80% 

Federal Tax Rate 35% 

State Tax Rate 7% 

Inflation 2.5% 

Discount rate 6.5% (real) 

ITC 30% 

Depreciation Modified Accelerated Cost 
Recovery System with bonus 
depreciation 

 

The power density used corresponds to a module with approximately 16% efficiency, which is 
the median efficiency of polycrystalline modules installed during 2015 (Barbose and Darghouth 
2016). The losses from soiling, shading, snow, wiring, and other sources are captured in the total 
system losses parameter, which was chosen to remain at the SAM default value for this analysis. 
This level has been selected to be representative of typical systems. The real discount rate was 
set to equal the loan rate, although the actual value used would likely vary significantly across 
potential customers.  

As with any analysis, the construction of the demand curves involved some simplifying 
assumptions: 

• We did not consider rooftop age or structural ability of the buildings to host a PV system. 
Our definition of a suitable rooftop only excluded area due to shading, orientation, minimum 
contiguous area, and tilt. While rooftop age is a significant barrier for any given year, 
rooftops will eventually be replaced, reducing the impact of this assumption over time.  

• We did not represent barriers from building occupiers not owning the building.  

• We used electricity prices and tariff structures current as of June 2016. 

• We did not represent any complimentary technologies or energy management strategies, such 
as a hot water heater with demand response or off-peak pre-cooling of a building. Beyond 
their intrinsic value, these load management behaviors would increase the bill savings of PV 
in most situations. 
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4 Opportunities and Barriers to Midscale PV 
Market Deployment 

While there is significant techno-economic potential for deployment of PV in the midscale 
market, other considerations can influence the decision to install PV. This section explores both 
the opportunities that PV presents to midscale market customers (e.g., demand charge savings, 
achieving sustainability goals) and the barriers to installation (e.g., split incentives, transaction 
cost), based on interviews with market participants, relevant literature, experience with providing 
technical assistance to universities, and our analysis of PV system economics in the four building 
segments. For this report, we interviewed about a dozen industry stakeholders, representing a 
cross-section of PV developers and installers, end-users, and individuals involved in legal 
negotiations and contracts.  

First, we explore the benefits and barriers that are common across the midscale market space and 
then focus more narrowly on specific opportunities and challenges for the four building types 
considered in this analysis: offices, hotels, warehouses, and universities.  

4.1 Opportunities in the Midscale Market 
There are a variety of financial and non-monetary benefits that PV systems can provide to 
commercial-scale customers, which can substantially influence the decision about whether to 
install PV. The following benefits are common across participants in the midsize market 
segment; however, the degree to which each of these influences the purchasing decision varies 
by building type, energy use patterns, the type of business or organization, and how the business 
interfaces with customers. In subsequent sections, we will examine drivers for specific building 
categories.  

Energy Savings/Bill Stabilization: PV systems can result in energy savings and may provide 
greater certainty about future energy bills, which can be attractive for property owners or tenants. 
Energy savings offset upfront installation costs for host-owned systems, or result in net energy 
bill savings, as is typically the case of third-party solar PPAs. In either case, PV can provide a 
hedge against future energy costs because the primary costs of the PV system are associated with 
the upfront capital costs. However, one challenge for midscale market systems is that the bill 
savings are lower on a per-kilowatt-hour basis than for residential customers, because of 
differences in utility rates. A detailed discussion of energy savings and how this differs by 
building type is discussed in Section 4.3.  

Demand Charge Savings: PV customers may also be able to reduce demand charges.20 Demand 
charges are based on the kilowatts of power a building extracts from the grid—most often the 
peak demand over the course of a month. The degree to which building electricity loads align 

                                                 
20 Commercial electric bills are commonly composed of three components: a fixed charge, an energy charge for each 
kilowatt-hour consumed, and a demand charge based on the maximum kilowatts of power a building extracted from 
the grid over the course of a month. Fixed charges typically cannot be influenced by a PV system because they are 
constant regardless of a building’s consumption. Both the energy consumption charges and the demand charges can 
be reduced by PV. 
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with PV system output substantially impacts the magnitude of potential demand charge savings. 
The size of the PV system that can be installed relative to loads, as well as the specific utility 
demand charge design, affects the potential for savings. A more detailed discussion of the 
variation of demand charge savings by building type is discussed in Section 4.3.  

Achievement of Sustainability Goals: Installing onsite PV can be one method of achieving 
sustainability goals, if the RECs from the system are retained. For example, many corporations, 
universities, governments, and NGOs have established targets for reducing greenhouse gas 
emissions or using renewable energy to meet their energy needs. Installing onsite PV is one 
method of meeting these goals. However, no environmental claim can be made if RECs are not 
retained, as is common in markets with high solar REC prices (e.g., New Jersey, Massachusetts, 
and Washington, D.C.). 

Green Building Certification: The installation of onsite PV can help organizations achieve points 
that count toward achieving green building certification. For example, the U.S. Green Building 
Council’s Leadership in Energy & Environmental Design (LEED) certification program provides 
credit for the use of solar energy as one component of achieving certification as a green building.  

Higher Rents/Customer Value: The energy savings from PV result in reduced operating costs, 
which could potentially be transferred to occupants in the form of higher rents. The use of PV 
may also make the building more attractive, enabling the property owner to command higher 
rents. Studies of green buildings have shown that sustainability features are desired by tenants 
and some are willing to pay more for these features (Devine and Kok 2015).  

4.2 Barriers to Deployment in the Midscale Market 
Commercial buildings have a number of barriers that are common across various building types 
and uses. Market participants active in solar installation in the commercial building space 
identified the following as among the most challenging barriers to the midscale solar market.  

Tenant/Landlord Split Incentive: One of the most significant barriers to the installation of PV on 
commercial buildings is the tenant/landlord relationship. Often, commercial buildings are 
separately metered for electricity and the tenant pays the energy bill, but the owner is responsible 
for maintenance and upgrades to the building structure. Therefore, a split incentive is created if 
bill savings from the PV system go to the tenant, but the building owner faces the installation 
challenges without reaping the benefits. This can lead to instances in which the building tenant is 
interested in purchasing solar, but the building owner does not have interest or an economic stake 
in the project. Individual tenants may also not have sufficient loads to justify a project. In cases 
where the landlord provides all of electricity to the tenants, then PV can be attractive and the 
landlord can have a vested financial interest in the project. For reference, in the United States 
57% of office buildings, 45% of warehouses and storage units, and 21% of lodging buildings are 
not owner-occupied (EIA 2016a).21 

Building Ownership or Lease Term: The expected length of ownership of a commercial building 
is an important consideration for PV installations. Building types with frequent ownership 

                                                 
21 Owner occupancy numbers are for non-governmental buildings. 
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changes can be challenging because the lifetime of the PV asset is at least 20–25 years. 
Typically, buildings are likely to remain under the same ownership for at least 10 years; 20-year 
owners may be the best candidates for solar. Similarly, if a building is leased, often the term of 
the lease is significantly shorter (e.g., 6–8 years) than the 20 plus year lifetime of the PV asset. 
This discrepancy in duration of the PV asset and building contract length makes it difficult to 
finance projects. Typically, financing PV to yield positive economic benefits requires spreading 
costs over a 15–20 year period. For third-party owned financing structures, where revenues are 
collected over time from the end-user, the shorter lease length creates power sales risk. If the 
power purchaser leaves the building after the lease term, the third-party PV system owner has to 
sell the power into the wholesale market, to the building owner, or to another entity. This 
uncertainty creates additional risk and makes such contracts less attractive. Often solar providers 
want the building owner to guarantee the PPA contract and revenues in case of vacancy 
(Navigant Consulting 2015a). 

Building Ownership Structure: The type of entity that owns a building can have implications for 
the viability of PV projects as well. Some commercial buildings are owned by LLCs, which 
often do not have sufficient tax liability to utilize the federal investment tax credit (ITC). 
Likewise, universities, as public or nonprofit entities, cannot claim the federal ITC directly. 
Properties that are owned by joint ventures, where multiple parties must approve contracts, can 
also make PV projects challenging. This can be true for hotels, in particular. Many commercial 
buildings are owned by real estate investment trusts (REITs), which may only own the building 
asset for a short time. 

Roof Conditions and Obstructions: For midmarket rooftop systems, key considerations for 
evaluating the potential for installing a PV system are the condition of the roof and whether there 
are any obstructions to the installation. The condition of the roof is a key element of rooftop 
system economics. Buildings with roofs that have 15–20 years of life left are ideal for PV 
installations. Roofs that are already 10–15 years old and not ready for replacement can be 
problematic because the PV system would need to be taken down when roof replacement is 
required—adding substantial cost that is typically paid by the off-taker. In addition, if the roof 
needs an upgrade to hold the racking, this adds extra costs to the installation. Planned roof 
replacement yields the best economics because some of the roof replacement can be paid for as 
part of the PV installation.  

Another consideration is that the impact of PV on the life of an existing roof is unknown. PV 
installations can cause stress to the roof through wind, snow, and weight loads as well as 
penetrations, but can reduce foot traffic and provide protection to covered roof sections. Roof 
issues (except for obstructions) may not be as challenging for ballasted PV systems that do not 
penetrate the roof. Generally, it is ideal if any obstructions to the PV installation, such as HVAC 
equipment located on the roof, are on the north side of the building to reduce the shading from 
the obstructions.  

Creditworthiness of Off-Taker: For third-party owned systems or host-owned systems financed 
with a loan, the creditworthiness of the off-taker is an important consideration for enabling 
project financing. Under the PPA business model, the third-party owner puts up the capital to 
install the system, but requires a creditworthy off-taker to finance the project. For commercial 
and industrial projects, it can be difficult for developers to get credit profiles of potential off-
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takers. Lack of credit rating systems can be an issue for some commercial entities (e.g., REITs 
and real estate companies that establish a separate LLC for each building); there is a commercial 
FICO score for public but not private companies.  

Transaction Costs: A key factor affecting growth of midscale solar market is the relatively high 
fraction of transaction costs given the project size. Transaction costs, which may be similar in 
dollars to those of larger systems, can represent 5%–20% of the deal for midscale projects. 
Transaction costs cannot be spread over a larger base as for larger system and are much more 
complex than a residential project. Building owners typically have legal teams and specific 
requirements, but generally have limited experience with solar market transactions, which can 
lead to an extended negotiation process, sometimes involving relatively small building-specific 
details. In general, standardized contracts are not widely used, although the size and economics 
of midscale market projects typically cannot support extensive negotiation.  

Interconnection Issues: The interconnection process for midsized, behind-the-meter systems can 
be similar to that for larger utility-scale systems, even though much of the electricity is 
consumed on site rather than exported entirely to the grid. Thus, for midsized systems, the 
interconnection process often imposes a disproportionally large cost burden, which unfavorably 
affects project economics. Key challenges include a lack of interconnection cost certainty, 
potentially onerous impact studies, and relatively long processing and approval times. A recent 
analysis of interconnection timelines found that for a limited sample of midscale projects (250 
kW–2 MW) the median time for utilities to review and approve an interconnection request is 51 
days (Ardani et al. 2015). Additional time is needed to complete the final permission to operate 
(PTO) process, which may require additional utility inspections or witness testing. While time 
frames for the final PTO process vary widely across utility territories, the median for projects 
sampled was 18 days. Ultimately, project delays due to interconnection are more common for the 
midscale market than for smaller distributed PV projects (250 kW and under), with detailed 
impact study commonly required for any project greater than 1 MW (Ardani et al. 2015). PV 
installers often downsize projects to avoid the detailed study process, because its long duration 
and high costs can place financing at risk or render a project economically unfeasible. 

Permitting Process: Permitting processes can be very involved in some jurisdictions, particularly 
in downtown areas and larger cities. In general, large rooftop projects are more difficult to get 
permitted than ground-mounted projects because of zoning and contractual issues. In some cases, 
there is no clear right of appeal for permitting decisions. If jurisdictions have statutes that make it 
clear that solar has the right of way, this facilitates permitting. Some states have forbidden local 
land-use restrictions, and in these instances, the local authority cannot deny a permit for a solar 
system because it is considered unsightly.  

4.3 Building-Specific Considerations  
Each of the four market segments—hotels, offices, warehouses, and universities—has its own set 
of considerations that influence the decision of whether to install PV. While there are benefits or 
challenges that are common across the midmarket generally, as discussed above, the magnitude 
of impact that these factors has on the PV installation decision by a particular building segment 
varies. The following sections of this chapter provide a more detailed discussion of the specific 
factors that influence the decision to adopt PV for each of the four building categories. First, we 
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examine electric bill reduction benefits and how they vary by building type, and we then focus 
on other considerations for each building segment.  

4.3.1 Electric Bill Reduction from PV on Commercial Buildings 
A building’s energy consumption charge and demand charge can both be reduced by PV, as 
explained below. In general, a challenge for the midmarket is that the per-kilowatt-hour energy 
savings from PV are significantly lower for commercial customers than for residential 
customers. For example, commercial customers may pay utility rates of 4–6¢/kWh or less for 
energy compared to the perhaps 10–12¢/kWh paid by residential customers. Therefore, demand 
charge savings are important for overall project economics, but these can vary based on the 
commercial customers load profile relative to PV output.  

Reduced Energy Consumption Charges on Commercial Buildings 
The magnitude of energy savings can also depend upon how much energy is used onsite versus 
being exported to the grid and local policies addressing exports. For PV systems whose 
generation is small relative to their host building’s energy consumption, the energy savings are 
relatively straightforward. For every kilowatt-hour generated by the PV system, one less 
kilowatt-hour is purchased. Potential energy savings are often constrained by the amount of roof 
area suitable for hosting PV systems—an amount that typically cannot fully meet building loads.  

When systems are relatively large, savings are influenced by the amount of electricity exported 
from the host building to the utility grid. The monetary value of the exported electricity depends 
on the utility’s net metering regulations, which vary considerably by state. Often states or 
utilities have caps on the size of commercial PV systems that are eligible for net metering—these 
can range considerably by state from roughly 100 kW to substantially more than 2 MW. 
Generally, net metering allows the exported electricity to earn a credit equal to the retail rate, but 
some jurisdictions have made changes to net metering policies in recent years, modifying the 
terms (North Carolina Clean Energy Technology Center 2016).  

Figure 10 through Figure 12 have a set of vertical lines corresponding to the maximum sized PV 
system that a building of the given floor space could host on its roof, depending on how many 
stories it had. For example, a 54,000 square-foot office with five equally sized stories could host 
a 65-kW PV system. This calculation includes a derate for the fraction of roof on large buildings 
that is typically suitable for PV deployment, as informed by a previous NREL effort analyzing 
lidar data (Gagnon et al. 2016).  

Figure 10 through Figure 12 also show the relationship between a PV system’s size and the 
annual fraction of its generation that is exported. Each line terminates at the point where the PV 
system’s annual generation would be equal to the host building’s annual consumption. For 
example, the small 5,500 square-foot office we modeled in Daggett, California, could generate 
an amount equal to its annual consumption with a 40-kW PV system, and such a system would 
export 45% of its annual generation. Daggett, Kansas City, and Seattle were selected to represent 
a range of high, medium, and low quality solar resources. 



21 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Figure 10. Exported PV by office size 

The three office sizes start exporting electricity with fairly small systems—ones that achieve 
slightly less than 5% annual energy penetration (Figure 10). This exportation at low system sizes 
largely stems from low electricity consumption on the weekends. Additionally, Figure 10 shows 
that PV systems sized to equal the host’s annual energy consumption would end up exporting 
approximately 50% of the electricity the system would generate. This is unlikely to be realized 
for medium and large offices, however, because they typically do not have the roof area to host 
such large systems. For example, a typical 500,000 square-foot office with ten stories could host 
a 300-kW PV system, which would export effectively none of the PV generation. This illustrates 
a broader trend: multistoried office buildings do not have enough roof space to host systems 
large enough to export a significant fraction of their generation. Therefore, those systems are 
insensitive to how exported energy is compensated.  

 

 

Figure 11. Exported PV by hotel size 

In contrast to offices, our simulated hotels can host PV systems that supply a larger fraction of 
their annual energy consumption before exporting any PV generation—ranging from 12% to 
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20% depending on the building size, location, and use patterns (Figure 11). The higher fraction, 
as compared to offices, is largely due to the occupancy of the hotels on the weekends. Levels of 
exportation rose rapidly beyond that point due to less consumption during the daylight hours. 
Ultimately, between 56% and 62% of generation was exported from hotels that had systems 
sized to generate equal to their annual consumption. As with offices, multistoried hotels would 
likely not have the suitable roof area necessary to build a system large enough to export a 
significant fraction of its generation. For example, our 43,000 square-foot hotel with three stories 
would export approximately 2% of its annual generation if it filled its roof with PV, and our 
122,000 square-foot hotel with four or more stories would export effectively none of its PV 
generation.  

 

 

Figure 12. Exported PV for warehouses 

The most noteworthy feature of typical unrefrigerated warehouses is the fact that their abundant 
roof area, tendency to be single-storied, and relatively low electricity consumption per square 
foot of floor area lead to them having the potential to install systems much larger than what 
would generate an amount equal to their annual electricity consumption (Figure 12). 

Reduced Demand Charges on Commercial Buildings 
The reduction of a building’s monthly peak demand from a PV system is often only a small 
fraction of the system’s maximum power output. Also, the level of demand charge savings is not 
guaranteed and can vary with changes in PV output and how well it correlates with building 
demand. Variability in solar irradiance from changes in weather can create spikes in the total net 
load. A temporary period of cloudiness, when PV is not available, can set the level of a 
building’s peak demand in an otherwise sunny month—thereby significantly reducing the PV 
system’s influence on demand charges. This effect can be mitigated with solar load controllers, 
although the analysis in this report did not consider supporting technology of that type.  

In addition, the efficiency of a PV system in reducing a building’s peak demand depends on the 
alignment between the building’s peak load and PV system output. In general, the ability of PV 
to generate demand charge savings decreases with larger PV system sizes. This is because 
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increasing quantities of PV generation shift the hour in which the building’s net load peaks either 
later or earlier in the day, when the PV system’s output is decreased and is less effective at 
reducing the load.  

This trend is shown with a examples of an office, hotel, and warehouse in Figure 13 through 
Figure 15. Each figure shows the original load profile of the day on which the building’s demand 
peaked in the month of October. Additional lines are given that show what the net load would 
have looked like if PV systems of varying sizes had been installed on the building.22 The values 
indicate the percentage of the building’s annual energy consumption that would be provided by 
PV. The right panel in the figures shows what the month’s peak demand was for a range of PV 
system sizes. This is just the reduction in peak demand for a particular example month—as 
mentioned above, variation in solar irradiance could reduce the effectiveness of PV at decreasing 
peak demand in other months. 

 

Figure 13. Example of influence of increasing quantities of PV on October's monthly max demand 
for a large office building in Denver 

As greater quantities of PV are installed, the peak demand shifts to later in the day for the 
example large office building (Figure 13). The first 567 kW (which would generate 15% of the 
building’s annual consumption) was moderately effective at shifting the peak—the building’s 
peak demand occurred at 4 p.m., four hours from peak PV production. For every kilowatt of 
those first 567 kW, there was a 0.35 kW reduction in the month’s maximum demand—illustrated 
by the curve on the right side of the figure. Once a system larger than 567 kW was installed, 
however, the hour of peak demand shifted to a later hour. Beyond this point, the reduction in 
peak demand per kilowatt of additional PV was lower. With a system size of 1,300 kW, the peak 
demand of this particular office moved outside of daylight hours, and no amount of additional 
PV could further reduce demand charges.  

                                                 
22 SAM was used to determine the net loads. 
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Figure 14. Example of influence of increasing quantities of PV on October’s monthly max demand 
for a large hotel in Denver 

In contrast to the profile of the office building, Figure 15 shows a hotel with an inverted profile 
that has its peak demand occur during the evening. In a situation such as this, PV cannot reduce 
the building’s peak demand, and therefore cannot reduce the building’s demand charges.23 
Intelligent load management strategies, such as precooling buildings or co-locating hotels with 
other facilities, can result in a non-inverted load profile. Therefore, this example should be the 
general trend of a building with an inverted profile, and not a statement about all hotels. 

                                                 
23 This is assuming the building is on a traditional demand charge structure that sets demand as the month’s peak at 
any hour. Buildings on more advanced tariffs that have time-of-use or coincident peak components could still reduce 
their demand charges with PV, even if their peak demand was outside of daylight hours. These types of tariffs are 
uncommon, but may become more common as utilities seek to send more accurate price signals to potential 
distributed PV customers. 
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Figure 15. Example of influence of PV on October’s monthly max demand of a warehouse in 
Denver 

The warehouse in our set of examples had a peak load that occurred at 4 p.m. and had a sharp 
drop in electricity consumption after that point. The result was a constant reduction in peak 
demand of 0.35 kW per kilowatt of PV installed. If the building’s consumption had remained at 
that level for another hour, we can see that the resulting decrease in peak demand per kilowatt of 
PV would have been significant reduced. This emphasizes the sensitivity of demand charge 
savings from PV to the degree to which electricity consumption is maintained into the evening. 

The above illustrations are based on example buildings. Many buildings within each class will 
have load profile shapes that deviate significantly from these figures. Further, electricity savings 
may be achieved as PV system sizes increase, even if the demand charge component is no longer 
affected. And for multistoried buildings, roof area constraints would often prevent the 
installation of large enough PV systems to drastically shift the hour of peak demand. 

4.3.2  Electric Bill Reduction from PV at Universities 
To explore energy and demand charge savings at universities, we calculated the bill savings of 
seven universities for varying amounts of PV in the Midwest, West, and South census regions.24 
The universities vary in size from fewer than 2,000 full-time students to more than 20,000 full-
time students, and include both public and private institutions. As explained previously, our 
analysis did not restrict the amount of PV for universities by the availability of rooftop or land 
area. Rather, in constructing the demand curve for each individual university, we evaluated a 
quantity of PV up to the amount that would generate 25% of the annual consumption of 
electricity from the campus. This is much larger than historically typical installations, which 
often only provide several percent of a university’s annual electricity consumption—but is 
nonetheless shown here in order to explore PV value across a broad range.  
                                                 
24 Although diverse, the degree to which this portfolio of universities represents the national portfolio was not 
calculated. 
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Universities typically have large demand charges, so the marginal value of additional PV is high 
for initial smaller sized systems. Because of their large electricity use, universities have potential 
to benefit from larger PV systems, but the marginal value of those larger systems is smaller than 
for the initial smaller systems that reduce demand charges (Figure 16).  

Figure 16 (left and right) shows the marginal electric bill savings of additional PV, but the figure 
shows the bill savings on different scales on the x-axis. Figure 16 (left) plots the curves for all 
the universities in terms of the actual PV system size. This allows us to compare the relative 
hosting capacity of universities of different sizes. The points at which the lines end in Figure 16 
(left) correspond to the 25% annual consumption limit mentioned above—for example, the 
university represented by the yellow curve would generate electricity equal to 25% of its annual 
consumption with approximately 1,000 kW of PV. Some of the universities could host 
significantly more than the 5,000 kW shown here, but the plot was truncated for visual clarity. 
Figure 16 (right) plots each universities’ curves in terms of the annual PV generation as a 
fraction of total electricity consumption. By normalizing for total energy consumption, we can 
see that the curves are more similar than they appear in Figure 16 (left).  

  

Figure 16. First year electriciy bill savings for seven universities  

Note that both these figures show the marginal value of an additional kilowatt of PV capacity, 
not the average value of all of the installed capacity. For example, for the university represented 
by the blue line in Figure 16, if the university already has 2,000 kW of PV, the marginal value of 
an additional kilowatt of PV would be slightly less than $100 in the first year of operation. When 
considering the value of all 2,001 kW, the average marginal value would be $109.60 per 
kilowatt. 

The savings decrease as the system sizes increase because all of these universities are served by 
tariffs that include demand charges to varying degrees. For the seven universities examined, the 
PV capacity that achieves the first 5% energy penetration has significantly greater value due to 
its more efficient reduction of demand charges (Figure 17). The steep drop in value in those 
initial 5% is correlated to the magnitude of each university’s demand charge and the initial 
temporal coincidence between the hour of the original peak demand and peak solar generation. 
For example, the university represented by the red line has a demand charge of more than 
$18/kW and the original load profile often peaked in the early afternoon.  
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Figure 17 shows the value of PV in differnet energy terms from Figure 16—the average 
reduction of electric bill per kilowatt-hour of PV electricity. For example, if a PV array generates 
10,000 kWh in its first year and reduces the electric bill by $1,000—including demand charges 
and energy charges—then the first year average value is 10¢/kWh.  

This metric can be used to approximately gauge the relative value of a typical PPA, which often 
contract for energy in terms of cents per kilowatt-hour. Many universities are unable to monetize 
the federal tax credits and therefore enter into PPAs with third parties. Note that because this 
metric is just for the first year, it cannot be used alone to judge the value of a PPA. Assumptions 
about the forecasted changes in the price of electricity, evolution of electricity tariffs, and any 
escalation of the PPA price would be necessary to estimate the total lifetime value. The EIA’s 
Annual Energy Outlook and associated data project the changes in the future price of electricity, 
which can be used as one input in assessing the lifetime value of a PPA. 

  

Figure 17. Average PV generation value by system size and fraction of total electriciy 
consumption for seven universities 

4.3.3 Barriers and Opportunities for PV on Offices  
In this section, we discuss both the barriers and opportunities for PV on office buildings, based in 
part on interviews with market participants. Figure 18 shows the demand for PV on office 
buildings broken down by the size of the building. The curves are derived from the same analysis 
as described in Section 3.  
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Figure 18. PV demand curve for offices, by office size 

In offices, the technical potential of these (essentially arbitrary) size bins are all approximately 
the same. For example, offices from 5,000–10,000 square feet of floor space have approximately 
the same technical potential of rooftop PV as offices that have between 100,000 and 200,000 
square feet of floor space.  

Opportunities: Office buildings can be an attractive option for distributed PV for a number of 
reasons, including favorable economics and, in some cases, tenants with an interest in 
sustainability.  

• Office buildings typically have a consistent load, significant energy demands during the day 
due to steady cooling loads, and can have high demand charges, depending on the region. 
Therefore, the economics of PV can be fairly attractive. There are also opportunities for 
increasing demand charge savings by pairing solar with load management technologies, such 
as solar load controllers or storage. 

• Some tenants desire a sustainable work space. Office building owners may be able to recoup 
the cost of PV and other sustainability measures by charging higher rent for a sustainable 
work space.  

• Solar procurement may be of interest for office buildings interested in obtaining LEED 
certification.  

• Compared to other building types, the use and ownership of office buildings or office parks 
typically remains relatively stable over time, matching the lifetime of the PV system more 
closely.  

• Offices located in technology centers or office parks outside of downtown areas or urban 
centers generally have fewer siting and permitting restrictions and often more room for 
installing PV.  
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• A relatively untapped opportunity for solar is for a developer to aggregate purchases by 
multiple office tenants and construct an offsite solar array. However, this would require a 
virtual net metering arrangement, which is only available in limited jurisdictions.  

Barriers: Many of the barriers common across the midscale market can pertain to office 
buildings. Some of the barriers that are specific to certain types of office buildings or ownership 
arrangements are discussed below.  

• Limited roof space is a common challenge across office buildings. Often, it is not possible to 
develop a large enough roof-mounted PV system to cover a significant fraction of building 
load and make the system economic. For tall offices and high-rises in particular, access to the 
roof is an additional challenge, as well as permitting difficulties in large cities and downtown 
areas. HVAC systems located on the roof of office buildings can reduce available space for 
siting PV systems, while shading from other office buildings can also be a concern.  

• In some cases, larger systems can be developed on a parking garage, but the additional steel 
and construction required adds cost. Ground-mounted systems are typically the most 
economic if there is space, such as within an office park. Overall, the suitability of site is 
very important and can vary substantially across office buildings.  

• The split incentive associated with tenants and landlords is a common barrier for office 
buildings.  

• Screening prospective office buildings can also be challenging for installers because of the 
time required to determine whether a building is individually or master-metered. This often 
involves talking to the property management company and then reaching a contact at an 
investment bank that owns the building.  

• Load for individual tenants is often not sufficient to support a large enough system to make 
installation and financing viable (often projects 250kW or larger are preferred).  

• Transaction costs and negotiations can be substantial when siting PV on office buildings. 
Generally, standard forms are not used because building owners have specific issues and 
concerns. Further, many office building owners have limited experience with solar, which 
makes negotiations more time consuming for installers.  

4.3.4 Barriers and Opportunities for PV on Hotels 
In this section, we discuss both the barriers and opportunities of PV on hotels. Additionally, 
Figure 19 shows the demand for PV on hotels broken down by the size of the building. The 
curves are derived from the same analysis as described in Section 3.  



30 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

  

Figure 19. PV demand curve for hotels, by hotel size 

Figure 19 shows that of the 22 GW of total technical potential on hotels, a little over half of it is 
on midsized hotels with 10,000–100,000 square feet of floor area. The curves show a steeper 
decrease in potential capacity with increasing price as compared to offices, which reflects the 
relatively poor coincidence of PV generation and the electricity consumption of our simulated 
hotels. Due to the limited ability of PV to reduce demand charges on hotels, the highest value PV 
on these buildings is substantially lower than what was observed on offices or warehouses. 
Nonetheless, a moderate proportion of potential capacity would break even at current prices. 

Opportunities: Generally, hotels and offices have similar barriers and challenges, although there 
are a few distinct considerations for hotels. Unique benefits of hotels, relative to offices and 
other commercial buildings, include:  

• Hotels have one off-taker, as opposed to multiple tenants typically in office buildings, which 
simplifies the transaction.  

• Hotels are consumer-facing and can tell their customers about their sustainability efforts and 
the benefits of using solar energy. Many hotels have sustainability or green programs, and 
solar is one way of achieving sustainability goals (Navigant Consulting 2015b).  

• Hotels often have consistent usage across weekends and weekdays, which means they can 
often host larger systems before exporting energy to the grid. However, often the peak 
demand at hotels occurs in the evening and is not well aligned with solar output, making it 
more difficult to achieve demand charge savings.  

Barriers: Considerations of site suitability are similar to offices, although hotels have some 
unique challenges with respect to building ownership structures and turnover in ownership. Key 
challenges for siting PV on hotels include:  

• Hotels often have a franchise or LLC structure, which makes financing more difficult. 
Having multiple parties involved in the transaction adds significant complexity (Navigant 
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Consulting 2015b). If the end user is interested in installing PV, they also have to convince 
the franchise owner, who will also need to sign the contract. The ease or difficulty in 
reviewing the deal can influence the viability. In some instances, the end users do not have 
sufficient legal expertise to negotiate contracts and rely on corporate legal staff to help 
negotiate contracts.  

• Credit issues can be a significant challenge for hotels, particularly for third party-owned PV 
systems. Hotel revenue streams can vary because of seasonal differences in occupancy, 
which could lead to a risk of intermittent payments. PPA structures require a credit-worthy 
entity with a deep balance sheet, so typically the parent corporation is involved directly in the 
contract to satisfy credit requirements (Navigant Consulting 2015b).  

• Hotels tend to change owners and operators with some frequency because hospitality 
companies are primarily in the real estate business and assets are purchased and sold on a 
regular basis, with an average turnover of 8-9 years (Navigant Consulting 2015b). This 
makes solar investments riskier because the lifetime of the PV system could span multiple 
owners. Hospitality companies generally find lengthy contracts to be onerous and often do 
not evaluate projects longer than a 10-year period. 

• Similar to offices, roof space typically limits PV system sizing, unless there is a parking 
garage; ground-mounted systems are not typically an option. Site suitability is a significant 
issue. Considerations about available roof space, access, and obstructions are similar to those 
identified for offices.  

• Hotels may have additional requirements, such as insurance considerations because of having 
guests on the premises, which can drive up transaction costs. Some hotels have also been 
built to allow additional floors to be added; in those cases, solar is not preferred. Each 
property has unique issues, and agreements need to be modified for each location, which 
adds time and legal expense.  
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4.3.5 Barriers and Opportunities for PV on Warehouses  
In this section, we discuss both the barriers and opportunities of PV on warehouses. Figure 20 
shows the demand for PV on warehouses broken down by the size of the building. The curves 
are derived from the same analysis as described in Section 3.  

  

Figure 20. PV demand curve for warehouses, by warehouse size 

Warehouses of all sizes have a portion of their technical potential that is relatively high value 
(Figure 20). As with other buildings, this represents a scattering of PV systems designed to offset 
several percent of their host building’s load. As described in Section 4, this initial capacity is the 
most efficient at decreasing demand charges, and is therefore the most valuable. 

Opportunities: Warehouses have distinct advantages in terms of building structure and roof size 
that make them distinct from offices and hotels. The following are some of the key advantages of 
siting PV on warehouses.  

• Warehouses often lead to the best economics for PV installations among commercial 
buildings because of the relatively large roof area and lack of obstructions. For these reasons, 
there may be substantial opportunity for growth in this market segment.  

• Warehouses may have larger loads to serve with the PV system, although energy 
consumption can vary substantially depending on the type of warehouse. Often warehouses 
with air conditioning or refrigeration loads have load profiles to support PV installations; in 
other cases, loads may be small relative to the PV system that can be accommodated on the 
roof.  

• Owner-occupied warehouses, in which the owner consumes the power, likely provide the 
largest opportunity for installations because there are no landlord/tenant challenges.  

• Warehouse owners are often educated energy buyers, which can make transactions easier.  
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• In jurisdictions where there is a rooftop feed-in tariff (FIT) program available, owners can 
lease the warehouse roof for PV installations. One issue is whether the lease payment for the 
system is attractive enough for the warehouse owner.  

• In cases where a change in building ownership is expected during the lifetime of the PV 
project, the use of PACE financing could address concerns by enabling the loan to be 
transferred with the building. 

Barriers: While warehouses are often good candidates for utilizing solar energy, they may also 
face a number of barriers, many of which are common to other building types.  

• Structural issues, in terms of whether the roof is capable of supporting a large PV system, can 
be a consideration for systems mounted on warehouses.  

• The ratio of building load to PV production can be a concern for warehouses with relatively 
low loads. In some cases, there is not enough electricity consumed by the warehouse itself to 
utilize all of the PV production. This raises the question of whether to install a smaller PV 
project or not.  

• Some warehouses are owned by REITs, who may only own the building for a short time (3–5 
years) relative to the lifetime of the PV system, which can create a barrier to third-party 
owned systems in particular because of the need to transfer the contract. 

• Similar to other midmarket projects, transaction costs can be significant and contract 
negotiations can be substantial relative to the project size. Counterparties are sophisticated 
energy users, but may not have significant experience with solar energy.  

4.3.6 Barriers and Opportunities for PV at Universities  
Opportunities: Universities are substantially different than office buildings and hotels, with 
distinct hurdles and advantages for development of PV projects. The following are some of the 
key advantages of siting PV on university campuses.  

• Universities may own a substantial amount of land, which can be advantageous for siting and 
building PV projects. It can also potentially enable the installation of ground-mounted 
systems, which often have more favorable economics. In some instances, universities may be 
able to lease land to the developer in exchange for a lower PPA price for a PV system.  

• Often universities are large energy users and there are sufficient loads to justify fairly large 
renewable energy projects.  

• Many universities have sustainability initiatives in place, but many have not yet tapped 
opportunities in solar energy. Often there is widespread interest within the administration and 
faculty to improve sustainability and maintain an image of a sustainably-operated institution. 
Students are also often interested in driving clean energy projects.  

• Onsite renewable energy projects may offer research opportunities for faculty and 
students and curriculums can be developed to take advantage of projects located on or 
near campus. In some cases, universities may be able to support projects with longer 
payback periods if the project has additional benefits, related to research and student 
engagement on campus. 
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• Universities may have access to lower cost capital, either through use of a green revolving 
loan fund, student fees, or use of an endowment, though the magnitude of the federal ITC 
often discourages host ownership of systems. Use of endowment funds to date has been 
minimal but they would (1) provide capital to finance a solar system, and (2) provide an 
investment opportunity to a bond or treasury but with potentially higher rates of return.  

Barriers: While universities are often good candidates for using solar energy, they also have a 
number of barriers that are unique to their institutional structure and operating practices.  

• Campuses often have a variety of stakeholders involved in the decision-making process and 
can have complex decision-making structures. The decision to invest in solar energy may 
require buy-in from multiple committees and administrative offices, which can make the 
approval process time-consuming. It can be challenging to get approval and buy-in for capital 
improvements and investments that are not core to the university function. For example, a PV 
project might need to compete against core facilities such as a new library or department 
building. Often this means that universities are only willing to purchase power at guaranteed 
savings from current rates.  

• Administrative and procedural barriers can be significant. In some states, capital projects 
may have to go through separate state commissions that evaluate project economics, which 
can be a time-consuming process. State budget processes and funding availability can also 
delay projects. 

• Often, universities have specific procurement requirements that preclude them from sole-
sourcing projects. The need to issue public requests for proposals (RFPs) requires longer lead 
times in developing projects and slows the development process.  

• Universities, as nonprofit entities, often prefer to utilize PPA structures to be able to take 
advantage of federal tax incentives. However, some states do not allow PPAs with third 
parties. In addition, some schools may not have investment-grade credit to enable them to 
enter into a PPA agreement. Some universities are partially funded from state appropriations, 
which can introduce budgetary risks in the event that there are state budget cuts, which could 
impact their ability to pay third-party contracts.  

• Issues surrounding REC ownership can be challenging for universities. Often the sale of 
RECs is important for enabling project finances to pencil out, but the university needs to 
retain RECs to make claims about the project and to meet carbon goals. Often, there is 
confusion about these issues, particularly among project decision makers.  

• While universities may have significant amounts of land, land may already be dedicated to 
future buildings or campus expansions.  

• Financing of PV systems may differ from other infrastructure projects, which may pose 
challenges in gaining project approval. For example, university CFOs may not have 
experience with long-term contracts with third parties and may need education about the 
benefits (e.g., the hedge benefits of not being exposed to market prices for energy). 
Universities sometimes have cogeneration facilities on site, which can make PV pricing less 
attractive.  
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5 Strategies for Growing the Midscale Market  
This section explores ways of encouraging growth in the midscale solar market and addressing 
key barriers identified in Section 4. Options discussed below for expanding the market are 
derived in part from recommendations made by stakeholders active in the midscale solar market 
during interviews.  

5.1 Contracting Options and Innovations 
One of the most significant barriers to 
adoption of solar in the midscale 
market is the split incentive for the 
tenant and landlord, where the tenant 
pays for electricity, but the building 
owner is responsible for capital 
investments and maintenance. 
Another key issue is the difference in 
time frame of PV project financing 
and the typical length of commercial 
real estate lease agreements. The 
following are procurement options 
that consider these issues. First, we 
look at options when the building 
owner owns or contracts for the PV, 
followed by tenant contracts.  

Building owner options—Building 
owners can opt to either own the PV 
system or enter into a PPA agreement 
with a third party for the energy.  

1. In cases where the building 
owner has a gross lease and is 
responsible for utility bills, the 
building owner may be 
interested in owning or 
contracting for PV.  

2. For situations in which the 
building owner is responsible 
for electricity use only in common areas, an option is to size the PV electricity for the 
common areas.  

3. One potential new approach, under a net lease situation where the tenant pays for 
electricity, is to have the building owner sell the PV electricity directly to tenants under a 
PPA (between the landlord and tenant). This may be feasible, if allowed under state law, 
but has not been found to be implemented yet (Navigant Consulting 2015b).  

Types of Building Leases 

Under a gross lease, the building owner pays for 
property taxes, insurance, and maintenance, and may 
or may not include utility bills. Gross lease 
arrangements may lead to situations where the 
building owner enters into the contract for the PV 
system.  

A single net lease is a contract in which the tenant 
pays for rent and property taxes.  

A double net lease is a contract in which the tenant 
pays rent, property taxes, and insurance.  

Under a triple net lease, the tenant pays rent as well 
as other costs of the property such as property taxes, 
insurance, maintenance, and operating expenses. 
Under a triple net lease arrangement, the tenant may 
be interested in the contractual arrangement with a 
third party solar provider.  

A green lease is a special type of lease agreement that 
incorporates energy use, water efficiency, waste 
reduction, renewable energy, and other sustainability 
goals in the transaction  

Source: Navigant Consulting 2015b 
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4. Another potential new approach is to structure a PPA with the building owner that 
addresses the risk of tenant turnover and vacancy rates. For example, in a multitenant 
shopping center, the building owner takes into consideration the risk that the building is 
not always 100% occupied when establishing tenant leasing rates. A solar PPA investor 
could do something similar. The building owner may be able to take into consideration 
the risk of empty space in providing the electricity to tenants, for example, under a gross 
lease arrangement where electricity is included in the lease.  

5. To address the mismatch between the length of building ownership and the PV system 
20-plus year lifetime, the ability to transfer ownership of the asset or PPA is necessary to 
address risk. PPA’s typically include early buy-out provisions to address this. 
Alternatively, transfer can be achieved under a commercial PACE program because 
repayment remains with the building, not the building owner, as discussed below. 

Tenant options—Tenants can enter into a PPA agreement with a third party for the energy. In 
these instances, the tenant and third-party developer can negotiate an easement with the building 
owner or a roof lease payment to compensate the owner for participation in the project.  

1. In cases where there is a triple net lease or a green lease25 and the tenant is responsible 
for the electricity bills, contracting directly with the tenant for the electricity off-take may 
be the most viable approach.  

2. To address the mismatch between the PV project lifetime and the building lease, tenant 
PPA agreements are often structured to match the length of the building lease agreement 
(Navigant Consulting 2015a). Other potential new approaches are to transfer ownership 
of PPAs to a new tenant, with the building owner playing a backstop role. Another 
possibility, in regions with competitive wholesale power markets, developers may be able 
to sell solar power into the wholesale power market if an off-taker leaves. This might 
help reduce risks, but would likely generate revenues less than from the PPA contract.  

5.2 Alternative Financing Mechanisms for Midscale Market (PACE 
and FITs) 

Property-assessed clean energy (PACE) financing initiatives hold promise for enabling the 
expansion of midmarket solar by addressing a number of key concerns. Under a PACE program, 
a property owner can purchase or contract for a PV system and repay the costs through a special 
assessment on their property taxes. PACE can be useful for both hosted-owned systems as well 
as third-party financed systems. 

One advantage of PACE for commercial-scale solar projects is that the PV loan is tied to the 
property, rather than the occupant, providing a convenient mechanism for addressing differences 
in the PV system lifetime and shorter building lease terms. Other advantages of PACE for 
commercial-scale systems are that the repayments:  

• Are non-recourse, meaning that they do not impact the tenant’s creditworthiness  

                                                 
25 For more information on green leases, see the California Sustainability Alliance, 
http://sustainca.org/green_leases_toolkit/what_green_leasing, accessed September 19, 2016.   

http://sustainca.org/green_leases_toolkit/what_green_leasing
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• Do not require that the asset be paid in full in case of foreclosure or bankruptcy  

• Have interest payments that are tax-deductible 

• Generally have terms that are below the current cost of capital for building owners 

• May be considered an off-balance-sheet form of financing for the property owner, depending 
on accounting practices (Mendolsohn 2016). 

PACE programs can be developed in states where enabling legislation has been adopted and 
where a municipality or county implements a program, in conjunction with private lenders. To 
date, PACE funded projects exist in 14 states, with 32 states plus Washington, D.C. having 
adopted statutes that enable municipalities and counties to provide PACE for commercial 
properties (PACEnation 2016). Once challenge with PACE is that there is not a standard PACE 
program; while programs may have common elements, each program is unique to its jurisdiction.  

Feed-in tariff programs, such as those implemented by Southern California Edison (SCE) and 
Los Angeles Department of Water and Power (LADWP), can also help drive commercial-scale 
projects. These can help simplify transactions and contracting issues by enabling the PV system 
owner to sell the generation to the utility under the terms of the FIT. This can be particularly 
advantageous for building with a large amount of available roof space and no off-taker for the 
energy, such as warehouses that may not have sufficient loads to absorb the PV generation. FITs 
are available in a limited number of states, however. In cases where FITs and net metering are 
not available, building owners could also explore the option of selling the PV project output 
directly to the utility or into the wholesale electricity market.  

5.3 Aggregated Bidding  
Another approach for building owners is to undertake an aggregated bidding process to obtain 
competitive solar installation bids. This can help reduce transaction costs across a larger group of 
installations. For example, a group of building owners, such as schools or universities, could 
develop an RFP process to solicit PV installation bids that includes a standard contract. PV 
installers would bid prices and any exceptions to the contract. This type of contract 
standardization and larger bidding processes can help keep installation prices low. 

The New York Power Authority (NYPA) conducted a competitive procurement on behalf of 
interested K-12 schools under New York’s K-Solar program. NYPA issued an RFP and selected 
a winning bidder, after which individual school districts could enter into a contract with the 
selected bidder. This collaborative procurement results in lower transaction costs for each K-12 
school as well as a very competitive solar price. NYPA was able to established a guaranteed cost 
savings mechanism for the PPA compared to retail rates, with a true up every five years (New 
York State Education Department 2015).  

Similarly, the Council of Independent Colleges of Virginia developed a group purchasing model, 
issuing an RFP for 37 MW of solar at 16 colleges. The RFP included four bundles of sites; 
bidders could bid on one or several bundles. Vendor selection is anticipated in fall 2016.  
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5.4 Expansion of Access to PPA Options 
For tax-exempt entities, who are not able to directly take the federal ITC, third-party PPA 
agreements are the most viable alternate to developing cost-effective projects that utilize all 
available incentives. Third-party PPAs can offer a number of other advantages in that they can 
result in positive cash flows immediately, costs are predictable over the lifetime of the agreement 
(which can reach 15–20 years), the third party takes responsibility for installation and operations 
and maintenance, risks of less than anticipated output are borne by the third party, and contracts 
with a third party are not on the company’s balance sheet. Therefore, these contracts do not limit 
the amount of debt that a company can incur (Feldman and Bolinger 2016).  

While PPAs are allowed or in use in 24 states and Washington, D.C., seven states disallow their 
use, and it remains unclear whether they can be used in the remaining states (DSIRE 2016). In 
some states, there are limits on system size or limitations on use in certain sectors. States that 
have disallowed these types of agreements typically do so because they may not conform to the 
states definition of a “utility” or that they can result in an unregulated utility selling power 
(Kollins et al. 2010). 

5.5 Increased Metering and Locational Siting Flexibility (Virtual Net 
Metering and Community Solar)  

Virtual net metering could help facilitate midscale market PV projects, particularly development 
of ground mounted systems, by eliminating barriers related to available installation space and 
short term leases. Virtual net metering can facilitate projects where onsite access is limited or 
rooftop systems are precluded because of the age of the roof, obstacles, or other barriers. 
Enabling multiple facilities to utilize the output of a larger ground-mounted system can reduce 
development barriers and enable larger projects to be constructed to take advantage of economies 
of scale.  

Currently, 14 states and Washington, D.C. have some form of virtual net metering or community 
solar policy (Center for Sustainable Development 2015).26 In some states, eligibility is offered in 
limited cases, for example, in California, virtual net metering is restricted to multitenant 
buildings, though utilities in the state are also launching community solar programs. In New 
York, for example, Bloomberg is using the state’s remote net metering policy to source solar 
from a 1.5-MW solar array at the JFK Airport Park for its midtown Manhattan skyscraper and 
other buildings (Bloomberg 2015). The policy allows Bloomberg to source a greater amount of 
solar than could be supported by building infrastructure.  

Community solar options provide a similar function to virtual net metering, allowing the output 
of a single PV project to be shared by multiple off-takers. Community solar programs are offered 
by utilities or third parties in states or utility service territories where the utility or third party is 
allowed to enable customers to purchase solar who may otherwise not be able to due to roof 
constraints or other barriers. Where this exists, the building owner may be able to install the PV 
system and sell the power to the community solar program. Alternatively, building owners and 
                                                 
26 States with virtual net metering or community solar supportive policies are California, Colorado, Connecticut 
Delaware, Maryland, Massachusetts, Minnesota, New Hampshire, New York, Oregon, Vermont, Washington, and 
Washington, D.C.  
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tenants may prefer to procure energy through community solar programs instead of installing a 
system on site. 

5.6 Data Transparency 
Greater data transparency on master-metered buildings could also lower customer acquisition 
costs, facilitating growth in the midscale market. Developers need to understanding how the 
building is metered and whether data are available for common areas and individual tenant 
spaces in order to assess project potential. If developers need to spend extra time gathering this 
data, from tenants, building operators, and/or building owners, their costs increase. Limited 
commercial real estate datasets exist currently, but more detailed data and wider availability 
could help facilitate the screening process and enable developers to hone in on the most viable 
projects more easily.  

5.7 Targeted Education Efforts 
Many entities in the midsize market are not fully familiar with solar energy options, cost 
reductions that have been achieved in recent years, and the ease of installation of solar. 
Educational materials and unbiased information provided by neutral entities, rather than market 
participants, can be important for end-users who want to develop a clear understanding of the 
marketplace and installation considerations in order to make informed procurement decisions.  

Efforts could be made to educate key market segments about the potential for expanded 
adoption, including information on solar energy procurement options, costs, contracting 
methods, environmental benefits, and installation issues. This could include educational efforts 
and campaigns coordinated by governmental organizations in conjunction with trade 
organizations or non-governmental organizations (NGOs) that work with various market 
segments, such as organizations that focus on sustainability issues for hotels, universities, or real 
estate developers.  

Some potential target audiences for additional educational efforts could be:  

• The Hospitality Industry, including large hotel chains: This market segment in particular has 
a relatively strong interest in sustainability, as evidenced by a relatively large number of 
trade associations and organizations that focus on sustainability issues (Table 3). Partnerships 
could be developed between governmental entities and existing trade groups, particularly 
those with a sustainability focus, to educate this segment about reductions in the cost of solar, 
financing options, siting, and other considerations for evaluating PV installations.  

• Real Estate Investment Trusts (REITs) and real estate developers: This segment of the 
market is particularly important because of its reach and the fact that are large fraction of the 
midmarket buildings are owned by REITs. Educational efforts could be undertaken by 
governmental organizations working through or in conjunction with real estate trade 
associations or sustainability organizations (Table 3). In addition to educating this audience, 
additional clarity is needed from the IRS about whether REITs can install solar and not 
jeopardize their tax status.  

• Universities: While educational efforts have been underway in this sector, the large number 
and geographic spread of universities may warrant continuing efforts. Like hotels, 
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universities have a large number of trade associations or university consortiums that focus on 
sustainability. Continued outreach efforts could leverage efforts by these groups and focus on 
educating university staff about solar energy options, onsite versus offsite issues, and system 
ownership versus the use of third-party suppliers to take advantage of tax credits.  

Table 3. Selected Sustainability Associations for Building Segments 

 Association/Organization Description 

H
ot

el
s 

The American Hotel & Lodging Association 
(AH&LA) 
ahla.com  

AH&LA's comprehensive Green Resource Center offers 
guidelines, best practices, industry suppliers, and other tips 
for becoming a more eco-friendly organization.  

Global Sustainable Tourism Council 
gstcouncil.org/en/  

Establishes and manages global sustainable standards 
with the aim of increasing sustainable tourism knowledge 
and practices among public and private stakeholders 

Green Hotelier 
greenhotelier.org/about-us/ 

A project of the International Tourism Partnership, Green 
Hotelier works with hotel companies to drive the 
responsible business agenda. Through ITP, Green Hotelier 
reaches 24,000 hotel properties in over 100 countries.  

Green Lodging News 
greenlodgingnews.com  

A leading environmental news source, it provides a 
resource for current industry articles and product features. 

Rainforest Alliance 
rainforest-alliance.org/tourism/training  

Works with major local and international tour operators 
around the world to promote ecologically and socially 
responsible best practices for tourism businesses in Latin 
America  

Sustainable Travel International 
sustainabletravel.org 

Provides accommodations with a suite of solutions that 
help them to understand, monitor, report on, and improve 
performance across key sustainability indicators.  

The Travel Foundation 
thetravelfoundation.org.uk/green_business_tools/  

Provides comprehensive advice for accommodation 
providers who would like to green their property 

O
ffi

ce
s 

an
d 

W
ar

eh
ou

se
s 

Association of Green Property Owners & 
Managers (AGPOM) 
agpom.org  

AGPOM is for commercial real estate, multifamily and 
hospitality properties and primary focuses on raising 
awareness of the connection between “green” practices 
and reduced property risks.  

BOMI 
bomi.org/agpom.aspx  

A nonprofit, independent educational institute that aims to 
fulfill the need for a higher level of training and expertise in 
the property and facility management profession 

Distribution Business Management Association 
(DBMA) 
dcenter.com  

DBMA provides think tank forums between business and 
academia that seek solutions to the pressing issues facing 
today’s and tomorrow’s supply chain and logistics 
executives. 

Greenbiz 
greenbiz.com  

Works to harness the power of technology to bring 
environmental information, resources, and tools to the 
mainstream business community  

NAIOP Commercial Real Estate Development 
Association 
naiop.org  

Provides networking opportunities, educational programs, 
research on trends and innovations and strong legislative 
representation. 

U.S. Green Building Council 
usgbc.org  

USGBC is committed to transforming the way our buildings 
are designed, constructed, and operated through LEED. 

https://www.ahla.com/default.aspx
http://www.gstcouncil.org/en/
http://www.greenhotelier.org/about-us/
http://www.greenlodgingnews.com/
http://www.rainforest-alliance.org/tourism/training
http://sustainabletravel.org/
http://www.thetravelfoundation.org.uk/green_business_tools/
http://agpom.org/
http://www.bomi.org/agpom.aspx
http://www.dcenter.com/
http://www.greenbiz.com/
https://www.naiop.org/
http://www.usgbc.org/
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 Association/Organization Description 
U

ni
ve

rs
iti

es
 

The Association for the Advancement of 
Sustainability in Higher Education (AASHE) 
aashe.org/about  

Empowers higher education faculty, administrators, staff, 
and students to be drivers of sustainability innovation 

Second Nature 
secondnature.org  

Works with colleges and universities to help make the 
principles of sustainability fundamental to every aspect of 
higher education 

Green Gigawatt Challenge 
http://greengigawatt.org/about.php  

An effort to catalyze 1 GW of green power by 2020 by 
providing support to help campuses enter into large scale 
PPAs 

The National Association of College and 
University Business Officers (NACUBO) 
nacubo.org/About_NACUBO.html 

NACUBO is a membership organization representing more 
than 2,100 colleges and universities across the country. 

Solar University Network 
solarendowment.org  

An initiative of the Midwest Renewable Energy Association 
(MREA), which seeks to make solar energy cost-
competitive with other forms of electricity by the end of the 
decade 

 
5.8 Simplification of Interconnection Processes 
Customer acquisition is a large barrier to midmarket solar, but other processes also hamper the 
market, adding time and money to projects. Simplifying interconnection processes for midsized 
behind-the-meter systems can remove a cost and transactional burden for midscale projects. 
Interconnection costs are highly site specific, largely driven by distance from the substation, 
distribution system capacity, and PV colocation with other services. In some states, 
interconnection processes for commercial-scale projects can be similar to that of larger-scale 
systems, which imposes a burden and cost for the substantially smaller systems. While state 
interconnection rules vary, efforts could be undertaken to simplify interconnection procedures 
for behind-the-meter systems, with the rationale that much of the energy is used on site and not 
fed back into the utility grid; therefore, grid impacts should be negligible. 

Potential improvements to interconnection procedures for midscale PV systems include greater 
cost certainty, fast tracking of interconnection studies, shorter processing times, and adaptable 
interconnection forms that can be used with third-party financing approaches. For example, to 
address cost risks for projects seeking interconnection, California established a “cost envelope” 
approach, where developers have the option to get a ±25% binding cost estimate (CPUC 2016). 
In addition, California and some other states, have procedures to fast track impact studies for 
projects up to 2 MW in size (Ardani et al. 2015).  

Adding transparency in the interconnection process could also speed transaction times. Investor-
owned utilities in California are required to provide online interconnection maps that show key 
information about the interconnection potential of distributed resources. In Hawaii, Hawaiian 
Electric (HECO) publishes its interconnection queue online so installers can see where their 
project is in the queue.  

Developing more flexible and adaptable interconnection forms that address various contracting 
arrangements could also facilitate midscale market PV transactions, by minimizing legal barriers.  

http://www.aashe.org/about
http://secondnature.org/
http://greengigawatt.org/about.php
http://www.nacubo.org/About_NACUBO.html
http://www.solarendowment.org/
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5.9 Simplification and Standardization of Transactions  
Standardization of contracts and contract terms would help simplify the installation process and 
reduce transaction costs for midscale PV installations. Commercial PV contracts can be heavily 
negotiated to satisfy individual end-user circumstances, which can be financially onerous given 
typical project sizes. The use of standardized contracts, such as those used for mortgages or car 
purchases, could help reduce costs and the transactional barriers associated with detailed legal 
negotiations.  

• Standardized contracts for commercial and residential systems have been developed by the 
Solar Access to Public Capital working group, supported by the U.S. Department of Energy, 
with input from a variety of industry participants.27 The working group also created a best 
practices document for installation and operations and maintenance.  

• NREL created an annotated explanation of certain key PPA terms.28 Using the K-Solar PPA 
template, the widget allows users to click on key terms (e.g., “facility access agreement”) and 
see an explanation of that term. 

Wider acceptance of standardized contracts for midsized projects could help reduce transaction 
costs as a barrier.  

A standardized method for analyzing credit risk could help with third-party financing agreements 
in the midscale PV market. One of the key challenges is showing the creditworthiness of the off-
taker in order for the third party to get the system financed. There is no standardized credit score 
or rating for private sector companies in the midscale market, which makes PPA transactions 
more challenging. Some industry efforts are underway to create a standard method for assessing 
the risk of commercial and industrial solar projects, in order to make projects more easily 
financeable.29 

                                                 
27 For more information and access to the standardized contracts, see https://financere.nrel.gov/finance/content/solar-
securitization-and-solar-access-public-capital-sapc-working-group#standard_contracts, accessed August 29, 2016.  
28 See http://widgets.nrel.gov/financere/interactive-solar-ppa/.  
29 For example, see http://www.trusolar.org/about.html 

https://financere.nrel.gov/finance/solar_securitization_public_capital_finance
https://financere.nrel.gov/finance/solar_securitization_public_capital_finance
http://widgets.nrel.gov/financere/interactive-solar-ppa/
http://www.trusolar.org/about.html
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6 Summary and Conclusions 
The midscale market has grown more slowly than the residential and utility-scale segments in 
recent years, with non-residential PV installations representing only 14% of total installations in 
2015. Growth has been more modest for midsize behind-the-meter PV systems (up to 2 MW) 
because this market faces a variety of institutional and economic barriers in the form of split 
incentives between landlord/tenant, siting restrictions, contracting complexities, and transaction 
costs. However, this market segment is ripe for substantial future growth if key barriers can 
be addressed.  

In this analysis, we examined the market potential for four key segments that hold promise for 
increased deployment of PV: hotels, offices, warehouses, and universities. At 2015 average (50–
100 kW) installed prices ($3.20/WDC), the techno-economic potential for these market segments 
is substantial, with 22 GW of PV that could potentially be installed on offices, 15 GW on 
warehouses, and 6 GW on hotels. These estimates represent the amount of PV capacity that 
would break even for the system owner, without consideration of institutional barriers or access 
to financing.30 Further price reductions could lead to significantly larger potential because these 
estimates (based on the 2015 price of PV) represent 37% of the total technical potential for 
offices, 41% for warehouses, and 30% for hotels. With future price declines on par with the DOE 
SunShot 2020 targets, the techno-economic potential for these three segments could reach more 
than 100 GW (16 GW hotels, 34 GW warehouses, 54 GW offices, which corresponds to 73%, 
92%, and 89% of their respective total technical potential).  

We estimate that if all universities deployed distributed PV up to a capacity that would generate 
25% of their annual electricity consumption, the total capacity would be slightly greater than 
16 GW. Of this, 3.7 GW of “high value” capacity exists—capacity that would result in average 
bill savings greater than 10¢/kWh. Techno-economic potential estimates for universities were 
calculated using a different methodology because they are not a building type per se and 
different data sources were available.  

The techno-economic analysis showed that—on average—offices had the highest bill savings per 
kilowatt of PV installed due to peak load occurring during daylight hours where PV could reduce 
demand charges. Hotels had the lowest bill savings due to a tendency for peak demand to occur 
in the evening, and warehouses fell between the two. The economics of PV on universities is 
strengthened wherever the entire campus is metered together, but the economics are weakened 
by generally less expensive electricity on campuses. Critically, however, the analysis showed 
that the value of PV varied significantly within each building segment and it was most strongly 
driven by the price and structure of the electricity rate to which the building would subscribe.  

While institutional and transactional barriers may make it challenging to achieve the full techno-
economic potential estimates, a number of factors on the positive side of the ledger encourage 
development. For example, many midmarket customers, including corporations, universities, and 
hotels in particular, have sustainability goals and initiatives. Solar energy procurement is a 

                                                 
30 The analysis assesses siting restrictions associated with roof area, shading and other characteristics, but it does not 
consider the age of the roof or structural ability of the building to accommodate PV.  
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relatively untapped additional effort that could fit well within those efforts. Table 4 compares the 
opportunities and barriers to PV deployment in the four market segments examined here.  

Table 4. Comparison of Opportunities for PV Deployment by Market Segment 

 Offices Hotels Universities Warehouses 

Electricity 
Savings Potential ◕ ◕ ◑ ◕ 
Demand Charge 
Reductions ◕ ◔ ◕ ◑ 
Sustainability 
Goals ◔ ◑ ● ○ 
Stakeholder 
Interest ◑ ◑ ● ○ 
Ownership 
Structure ◔ ○ ● ● 
Building and 
Land Availability ◔ ◔ ◑ ◕ 
Metering ◔ ● ● ● 

 

To realize substantial growth in the midscale sector in coming years, a number of strategies 
could be pursued to address key barriers. Based in part on discussions with market participants, 
options for facilitating increased deployment in the midscale market include the following.  

• Policies to Enable Third-Party PPAs: Expanded adoption of policies enabling use of third-
party PPAs in areas where it is either unclear or not in use would help drive midscale market 
deployment, particularly for entities unable to monetize federal tax credits. Often, projects 
are stalled if financing structures cannot utilize the ITC and are required to provide upfront 
capital.  

• Contracting Options: To address split incentives and the mismatch in length of building lease 
and PV financing terms, some options include triple net leases, where the tenant pays 
electricity costs, or new ideas such as having the building owner address the risk of tenant 
turnover in the contract or separate landlord/tenant contracts.  

• PACE Financing: PACE financing offers advantages for commercial-scale PV projects 
including that the PV loan is tied to the property rather than the occupant, which provides a 
mechanism for addressing differences in the PV system lifetime and shorter building lease 
terms. 

• Feed-in Tariffs: FITs may help simplify transactions and contracting issues by enabling the 
PV system owner to sell the generation to the utility. This can be particularly advantageous 
for buildings with a large amount of available roof space and no off-taker for the energy.  
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• Policies that Enable Offsite Systems: Wider adoption of virtual net metering could help 
facilitate midmarket ground mounted systems by eliminating barriers related to available 
installation space and short term leases. Community solar offers offsite opportunities where 
site restrictions are significant. 

• Educating Key Market Segments: Efforts could be made to team with trade associations and 
others to educate key market segments about the potential for expanded adoption. 

• Transactional Issues: Simplifying interconnection processes and using standardized contracts 
and terms for midscale behind-the-meter systems could reduce legal barriers and costs. In 
addition, a standardized method for analyzing credit risk of private entities in the midscale 
market could help facilitate use of third-party financing. 

In addition to the market segments studied here, the following types of facilities hold potential 
for significant adoption of PV, based on their relative characteristics: K-12 schools, other 
municipal government facilities, water districts, hospitals, brownfields, and manufacturing 
facilities. These types of entities could be targets for educational efforts or could warrant 
additional techno-economic potential analysis. 
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