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1 Introduction 

The Probabilistic Resource Adequacy Suite, or PRAS, is a software package for studying power system resource 

adequacy. It allows the user to simulate power system operations under a wide range of operating conditions in order 

to study the risk of failing to meet demand (due to a lack of supply or deliverability), and identify the time periods and 

regions in which that risk occurs. 

1.1 Resource Adequacy Background 

An electrical power system is considered resource adequate if it has procured sufficient resources (including supply, 

transmission, and responsive demand) such that it runs a sufficiently low risk of invoking emergency measures (such 

as involuntary load shedding) due to resource unavailability or deliverability constraints. Resource adequacy is a 

necessary (but not sufficient) condition for overall power system reliability, which considers a broader set of system 

constraints including operational flexibility and the stability of system voltages and frequency. 

Probabilistic resource adequacy assessment is the process by which resource shortfall risk is quantified. It involves 

mapping quantified uncertainties in system operating conditions (primarily forced outages of generators and lines) 

into probability distributions for operating outcomes of interest by simulating system operations under different prob- 

abilistically weighted scenarios. The nature of those simulations varies between models and can range from simple 

snapshot comparisons of peak demand versus available supply, through to chronological simulations of system dis- 

patch and power flow over the full operating horizon. 

The resulting outcomes can then be used to calculate industry-standard probabilistic risk metrics: 

Expected Unserved Energy (EUE) is the expected (average) total energy shortfall over the study period. It may be 

expressed in energy units (e.g., GWh per year) or normalized against the system’s total energy demand and 

expressed as a fraction (normalized EUE, or NEUE, expressed as a percentage or in parts-per-million, ppm). 

Loss-of-Load Expectation (LOLE) is the expected (average) count of periods experiencing shortfall over the study 

period. It is expressed in terms of event-periods (e.g., event-hours per year, event-days per year). When reported 

in terms of event-hours, LOLE is sometimes referred to as LOLH (loss-of-load hours). 

While a system’s shortfall risk can never be eliminated entirely, if these risk metrics are assessed to be lower than some 

predetermined threshold, the system is considered resource adequate. 

It can sometimes also be useful to express the average and/or incremental contribution of a particular resource to overall 

system adequacy in terms of capacity. This quantity (either in units of power, or as a fraction of the unit’s nameplate 

capacity) is known as the capacity credit (sometimes called capacity value) of the resource. While many different 

methods are used to estimate the capacity credit of a resource, the most rigorous approaches generally involve assessing 

the change in probabilistic system adequacy associated with adding or removing the resource from the system. As a 

result, capacity credit calculation is often closely associated with probabilistic resource adequacy assessment. 

1.2 Basic PRAS Structure and Usage 

As illustrated in Figure 1, PRAS maps a provided representation of a power system to a probabilistic description of 

operational outcomes of interest, using a particular choice of operations simulation. The input system representation 

is called a “system model”, the choice of operational representation is referred to as a “simulation specification”, and 

different types of operating outcomes of interest are described by “result specifications”. 

PRAS is written in the Julia programming language and is controlled through the use of Julia scripts. The three compo- 

nents of a PRAS resource adequacy assessment (a system model, a simulation specification, and result specifications) 

map directly to the Julia function arguments required to launch a PRAS run. A typical resource adequacy assess- 

ment with PRAS involves creating or loading a system model, then invoking PRAS’ assess function to perform the 

analysis: 
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Figure 1. PRAS model structure and corresponding assessment function arguments

 

using PRAS

 

sys = SystemModel("filepath/to/mysystem.pras")

 

shortfallresult, flowresult =

 

assess(sys, SequentialMonteCarlo(), Shortfall(), Flow())

 

eue, lole = EUE(shortfallresult), LOLE(shortfallresult) 

More details on running PRAS via Julia code will be provided throughout the remainder of this report. In particular, 

Chapter 2 will detail the information contained in a system model input, Chapter 3 will explain the built-in simulation 

specification options in PRAS and the various modelling assumptions associated with each, and Chapter 4 will outline 

PRAS’ available result specifications. Chapter 5 will cover how PRAS can calculate the capacity credit of specific 

resources based on the results of resource adequacy assessments, and Chapter 6 will provide information on extending 

PRAS beyond its built-in capabilities. 
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2 Input System Specification 

Assessing the resource adequacy of a power system requires a description of the various resources available to that 

system, as well as its requirements for serving load. In PRAS, this involves representing the system’s supply, stor- 

age, transmission, and demand characteristics in a specific data format. This information is stored in memory as a 

SystemModel Julia data structure, and on disk as an HDF5-formatted file with a .pras file extension. Loading the 

system data from disk to memory is accomplished via the following Julia code:

 

using PRAS

 

sys = SystemModel("filepath/to/mysystem.pras") 

A full technical specification of the .pras storage format is available in the PRAS source code repository. Storing 

system data in this format ensures that it will remain readable in the future, even if PRAS’ in-memory data represen- 

tation changes. Newer versions of the PRAS package are always able to read .pras files created for older versions. 

An in-memory SystemModel data structure can also be written back to disk:

 

savemodel(sys, "filepath/to/mynewsystem.pras") 

PRAS simulates simplified power system operations over one or more consecutive time periods. The number of time 

periods to model and the temporal duration of a single time period are specified on a per-system basis, and must be 

consistent with provided starting and ending timestamps (defined with respect to a specific time zone). 

When working with multiple years of weather data, a user may wish to create separate system models and perform 

runs for each year independently, or create a single system model containing the full multi-year dataset. The first 

approach can be useful for studying inter-annual variability of annual risk metrics using only the built-in methods – 

while this is also possible with a single multi-year run, it requires some additional post-processing work. 

PRAS represents a power system as one or more regions , each containing zero or more generators , storages , and 

generator-storages . Interfaces contain lines and allow power transfer between two regions. Table 1 summarizes the 

characteristics of the different resource types (generators, storages, generator-storages, and lines), and the remainder 

of this section provides more details about each resource type and their associated resource collections (regions or 

interfaces). 

2.1 Regions 

PRAS does not represent the power system’s individual electrical buses. Instead, PRAS regions are used to represent 

a collection of electrical buses that are grouped together for resource adequacy assessment purposes. Power transfer 

between buses within a single PRAS region is assumed to take place on a “copper sheet” with no intraregional transfer 

limits or line reliability limitations considered. 

In a PRAS system representation, each region is associated with a descriptive name and an aggregate load time series, 

representing the total real power demand across all buses in the region, for every simulation period defined by the 

model. 

2.2 Generators 

Electrical supply resources with no modeled energy constraints (e.g., a thermal generator that can never exhaust its 

fuel supply) are represented in PRAS as generators . Generators are the simplest supply resource modeled in PRAS. 

In addition to a descriptive name and category, each generator unit is associated with a time series of maximum 

generating capacity. This time series can be a simple constant value (e.g., for a thermal plant) or can change in any 

arbitrary manner (e.g., for a solar PV array). Each generator is associated with a single PRAS region. 

3
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Figure 2. Relations between power and energy parameters for generator, storage, and generator-storage resources. 

For each period of an operations simulation, each generator takes on one of two possible availability states. If the 

unit is available, it is capable of injecting power up to its maximum generation capacity (for that time period) in its 

associated region. If the unit is unavailable (representing some kind of unplanned or forced outage), it is incapable 

of injecting any power into the system. Between time periods, the unit may randomly transition to the opposite state 

according to unit-specific state transition probabilities. Like maximum available capacity, these transition probabilities 

are represented as time series, and so may be different during different time periods. 

2.3 Storages 

Resources that can shift electrical power availability forward in time but do not provide an overall net addition of 

energy into the system (e.g., a battery) are referred to as storages in PRAS. Like generators, storages are associated 

with descriptive name and category metadata. Each storage unit has both a charge and discharge capacity time series, 

representing the device’s maximum ability to withdraw power from or inject power into the grid at a given point in 

time (as with generator capacity, these values may remain constant over the simulation or may vary to reflect external 

constraints). 

Storage units also have a maximum energy capacity time series, reflecting the maximum amount of dischargeable 

energy the device can hold at a given point in time (increasing or decreasing this value will change the duration of 

time for which the device could charge or discharge at maximum power). The storage’s state of charge increases with 

charging and decreases with discharging, and must always remain between zero and the maximum energy capacity in 

that time period. The energy flow relationships between these capacities are depicted visually in Figure 2. 

If a storage device is charged and the maximum energy capacity decreases such that the state of charge exceeds the 

energy limit, the additional energy is automatically “spilled” (the surplus energy is not injected into the grid, but simply 

vanishes from the system). 

Storage units may incur losses when moving energy into or out of the device (charge and discharge efficiency), or 

forward in time (carryover efficiency). When charging the unit, the effective increase to the state of charge is deter- 

mined by multiplying the charging power by the charge efficiency. Similarly, when discharging the unit, the effective 

decrease to the state of charge is calculated by dividing the discharge power by the discharge efficiency. The available 

state of charge in the next time period is determined by multiplying the state of charge in the current time period by 

the carryover efficiency. 

Just as with generators, storages may be in available or unavailable states, and move between these states randomly 

over time, according to provided state transition probabilities. Unavailable storages cannot inject power into or with- 

draw power from the grid, but they do maintain their energy state of charge during an outage (minus any carryover 

losses occurring over time). 

4

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



Hydro 
Reservoir

Upstream
Inflow

TurbinePump

Battery

PV
Panel

[Bidirectional]
Inverter

Heat 
Reservoir

CSP
Heat

Turbine

Fuel 
Stockpile

Fuel
Delivery

Combustion

 

Figure 3. Example applications of the generator-storage resource type 

2.4 Generator-Storages 

Resources that add net new energy into the system but can also move that energy forward in time instead of injecting 

it immediately (see Figure 3 for examples) are referred to as generator-storages in PRAS. As the name suggests, they 

combine the characteristics of both generator and storage devices into a single unit. 

As with generator and storage units, generator-storages have associated name and category metadata, and two avail- 

ability states with random transition probabilities. They have a potentially time-varying maximum inflow capacity 

(representing potential new energy being added to the system and analogous to the generator’s maximum generating 

capacity) as well as all the power and energy capacity and efficiency parameters associated with storages. They also 

have separate maximum grid injection and withdrawal capacity time series, reflecting the fact that (for example) they 

may not be able to discharge their internal storage at full capacity while simultaneously injecting their full exogenous 

energy inflow to the grid. The energy flow relationships between these capacities are depicted visually in Figure 2. 

A generator-storage in the unavailable state can neither charge nor discharge its storage, nor send energy inflow to the 

grid. Like storage, it does retain its state of charge during outages (subject to carryover losses). 

2.5 Interfaces 

Interfaces define a potential capability to directly exchange power between two regions. Any set of two regions 

can have at most one interface connecting them. Each interface has both a “forward" and “backward" time-varying 

maximum transfer capability: the maximum “forward" transfer capability refers to the largest amount of total net power 

that can be moved from the first region to the second at a given point of time. Similarly, the maximum “backward" 

transfer capability refers to the largest amount of total net power that can be moved from the second region to the first. 

2.6 Lines 

Individual lines are assigned to a single specific interface and enable moving power between the two regions defined 

by that interface. Like other resources, a line is associated with name and category metadata, and transitions randomly 

between two availability states according to potentially time-varying transition probabilities. Like interfaces, lines have 

a potentially time-varying “forward" and “backward" transfer capability, where the forward and backward directions 

match those associated with the line’s interface. 

The total interregional transfer capability of an interface in a given direction is the lower of either the sum of transfer 

limits of available lines in that interface, or the interface-level transfer limit. A line in the unavailable state cannot 

move power between regions, and so does not contribute to the corresponding interface’s sum of line-level transfer 

limits. 

5
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Table 1. PRAS resource parameters. Parameters in italic are fixed values: all others are provided as a time series.

 

Parameter

 

Generator Storage Generator-Storage Line

 

Associated with a(n)...

 

Region Region Region Interface 

Name

 

• • • • 

Category

 

• • • • 

Generation Capacity

 

• 

Inflow Capacity

 

• 

Charge Capacity

 

• • 

Discharge Capacity

 

• • 

Energy Capacity

 

• • 

Charge Efficiency

 

• • 

Discharge Efficiency

 

• • 

Carryover Efficiency

 

• • 

Grid Injection Capacity

 

• 

Grid Withdrawal Capacity

 

• 

Forward Transfer Capacity

 

• 

Backward Transfer Capacity

 

• 

Available → Unavailable Transition Probability

 

• • • • 

Unavailable → Available Transition Probability

 

• • • •
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3 Simulation Specifications 

There are many different simplifying assumptions that can be made when simulating power system operations for the 

purpose of studying resource adequacy. The level of simplification a modeler is willing to accept will depend on the 

goals of the study and the computational resources available to carry out the modeling exercise. 

PRAS is referred to as a “suite” because of its inclusion of multiple power system operations models of varying fidelity 

and computational complexity. Each PRAS analysis (a single invocation of PRAS’ assess function) is associated 

with exactly one of these operational models, or “simulation specifications”. A simulation specification encodes a 

particular set of assumptions and simplifications that will be used when simulating operations in order to assess the 

resource adequacy of the study system. 

The current version of PRAS includes three simulation specifications, Convolution , Non-Sequential Monte Carlo , 

and Sequential Monte Carlo , with additional user-defined specifications possible (see Section 6.1). The remainder 

of this section describes the methods and underlying assumptions of each of these built-in simulation specifications. 

3.1 Convolution 

The Convolution simulation specification is the simplest operational model in PRAS, making it the fastest to run but 

also the lowest fidelity. It corresponds to a classical Capacity Outage Probability Table (COPT) analysis (Billinton 

1970), where an average forced outage rate (FOR) for each generator is used to determine the long-run probability 

distribution of total system-wide available (or unavailable) generating capacity in each chronological period, assuming 

independent generator failures. Exact system risk metrics can then be calculated from the combination of system load 

and this distribution. 

3.1.1 Theory and Assumptions 

The total available capacity distribution is calculated by adding together the random variables (convolving together 

the distributions) associated with available capacity for each unit in the system. The resulting probability distribution 

can change in each time period according to the provided availability state transition probabilities, which determine 

the forced outage rate as follows: 

FOR = 

P ( Available → Unavailable )

 

P ( Available → Unavailable )+ P ( Unavailable → Available ) 

Once probability distributions for total available capacity have been calculated for each time period, exact system-level 

risk metrics (LOLP and EUE) for each time period can be directly computed, which are then used to calculate risk 

metrics (LOLE and EUE) for the overall simulation horizon. 

This method only considers generation adequacy, and assumes a “copper sheet” transmission infrastructure where all 

available generation capacity is deliverable to all load. The locations, transfer limits, and reliability parameters of 

individual transmission lines are ignored. 

This method also ignores the intertemporal nature of power system operations, assessing adequacy in each time period 

independently of all others. The operating constraints of energy limited resources cannot be properly represented, 

and so such resources (storages and generator-storages) are ignored when performing simulations using this model of 

operations. 

3.1.2 Usage 

A convolution-based resource adequacy assessment is invoked by calling PRAS’ assess method in Julia, with 

Convolution() as the simulation specification argument:

 

assess(sys, Convolution(), Shortfall()) 

7
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The Convolution() specification accepts multiple optional keyword arguments, which can be provided in any 

order: 

threaded A boolean value defaulting to true . If true , PRAS will parallelize probability distribution calculation 

across the number of threads available to Julia. Setting this to false can help with debugging if an assessment 

is hanging. 

verbose A boolean value defaulting to false . If true , PRAS will output informative text describing the progress 

of the assessment. 

3.2 Non-Sequential Monte Carlo 

The Non-Sequential Monte Carlo method extends the Convolution method with the ability to model inter-regional 

power transfer limits and line outages (energy-limited resources are still ignored). It represents a compromise in 

fidelity and speed between the simpler Convolution method and a more computationally intensive Sequential Monte 

Carlo simulation. 

3.2.1 Theory and Assumptions 

Whereas the Convolution method combines all generators into a single COPT / available capacity distribution for the 

entire system (per time period), the Non-Sequential Monte Carlo method generates one distribution for each region 

(derived from the generators in that region) and one distribution for each interregional transmission interface (derived 

from lines in that interface), per time period. 

Since generators in different regions are no longer collapsed into a single probability distribution, the number of 

unique system states is generally too large to allow enumerating through all of them. Instead, system states for each 

time period are representatively sampled by drawing total available generating capacities for each region and total 

available transfer capacities for each interface. These random samples are then used to estimate shortfall risk metrics 

using Monte Carlo sampling. 

Each set of sampled parameters is used to formulate the “pipe-and-bubble” network flow problem shown in Figure 4, 

in which local demand in each region is satisfied (or not) using a combination of local generation, imported power, and 

unserved energy. Regions with surplus capacity can export that power to their neighbors if transmission limits allow, 

with a small transfer penalty applied to prevent loop flows. Any demand that cannot be supplied under the randomly 

drawn generation and transmission limits is considered unserved. 

A predetermined number of operating condition samples are drawn for each time period in order to estimate shortfall 

risk metrics (LOLP and EUE) for that period. Like in the Convolution method, these independent period-level metrics 

are then combined to calculate metrics (LOLE and EUE) for the entire simulation horizon. 

3.2.2 Usage 

A Non-Sequential Monte Carlo resource adequacy assessment is invoked by calling PRAS’ assess method in Julia, 

with NonSequentialMonteCarlo() as the simulation specification argument:

 

assess(sys, NonSequentialMonteCarlo(), Shortfall()) 

The NonSequentialMonteCarlo() specification accepts several optional keyword arguments, which can be 

provided in any order: 

samples A positive integer value defaulting to 10000 . It defines the number of samples (replications) to be used in 

the Monte Carlo simulation process. 

seed An integer defaulting to a random value. It defines the seed to be used for random number generation when 

sampling generator and line availability. 
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Figure 4. Example three-region network flow problem to be solved by the Non-Sequential Monte Carlo simulation spec- 

ification. Any load that cannot be served within the sampled generation and transmission constraints goes unserved. 

threaded A boolean value defaulting to true . If true , PRAS will parallelize simulations across the number of 

threads available to Julia. Setting this to false can help with debugging if an assessment is hanging. 

verbose A boolean value defaulting to false . If true , PRAS will output informative text describing the progress 

of the assessment. 

3.3 Sequential Monte Carlo 

The Sequential Monte Carlo method is the most detailed simulation specification included in PRAS. Unlike the Con- 

volution and Non-Sequential Monte Carlo methods, it simulates the chronological evolution of the system, tracking 

individual unit-level outage states and the state of charge of energy-limited resources. While it is the most compu- 

tationally intensive simulation method provided in PRAS, it remains much simpler (and therefore runs much faster) 

than a production cost model. 

3.3.1 Theory and Assumptions 

While the Convolution and Non-Sequential Monte Carlo methods sample a system or region’s total available capacity 

from a probability distribution, the Sequential Monte Carlo method simulates unit-level outages using a two-state 

Markov model. In each time period, the availability state of each generator, storage, generator-storage, and line either 

changes or remains the same, at random, based on the unit’s provided state transition probabilities. The capacities 

from each available generator (or line) in a given time period are then added together to determine the total available 

generating (transfer) capacity for a region (interface). Storage and generator-storage units are similarly enabled or 

disabled based on their availability states. 

Like with the Non-Sequential Monte Carlo simulation specification, pipe-and-bubble power transfers between regions 

are possible, subject to interface and line transfer limits, and there is a small penalty applied to transfers in order to 

prevent loop flows. 

The Sequential Monte Carlo method is unique in its ability to represent energy-limited resources (storages and 

generator-storages). These resources are dispatched conservatively so as to approximately minimize unserved energy 

over the full simulation horizon, charging from the grid whenever surplus generating capacity is available, and dis- 

charging only when needed to avoid or mitigate unserved energy. Charging and discharging is coordinated between 
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resources using the time-to-go priority described in Evans, Tindemans, and Angeli (2019): resources that would be 

able to discharge the longest at their maximum rate are discharged first, and resources that would take the longest time 

to charge at their maximum charge rate are charged first. Cross-charging (discharging one resource in order to charge 

another) is not permitted. 

In Sequential Monte Carlo simulations, one “sample” involves chronological simulation of the system over the full 

operating horizon. Unserved energy results for each hour and the overall horizon are recorded before restarting the 

simulation and repeating the process with new random outage draws. Once all samples have been completed, hourly 

and overall system risk metrics can be calculated. 

3.3.2 Usage 

A sequential Monte Carlo resource adequacy assessment is invoked by calling PRAS’ assess method in Julia, with 

SequentialMonteCarlo() as the simulation specification argument:

 

assess(sys, SequentialMonteCarlo(), Shortfall()) 

The SequentialMonteCarlo() specification accepts several optional keyword arguments, which can be pro- 

vided in any order: 

samples A positive integer value defaulting to 10000 . It defines the number of samples (replications) to be used in 

the Monte Carlo simulation process. 

seed An integer defaulting to a random value. It defines the seed to be used for random number generation when 

sampling generator and line outage state transitions. 

threaded A boolean value defaulting to true . If true , PRAS will parallelize simulations across the number of 

threads available to Julia. Setting this to false can help with debugging if an assessment is hanging. 

verbose A boolean value defaulting to false . If true , PRAS will output informative text describing the progress 

of the assessment. 
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4 Result Specifications 

Different analyses require different kinds of results, and different levels of detail within those results. PRAS considers 

many operational decisions and system states internally, not all of which are relevant outputs for every analysis. When 

a user invokes PRAS’ assess function, one or more “result specifications” must be provided in order to indicate the 

simulation outcomes that are of interest, and the desired level of sample aggregation or unit type (if applicable) for 

which those results should be reported. In general, sample-level disaggregation should be used with care, as this can 

require large amounts of memory if simulating with many samples. 

The current version of PRAS includes six built-in result specification families, with additional user-defined speci- 

fications possible (see Section 6.2). These families can be classified into regional results ( Shortfall and Surplus ), 

interface results ( Flow and Utilization ), and unit results ( Availability and Energy ). 

Not all result specification families or disaggregation variants within a family are available for use with every simula- 

tion specification. For example, the Convolution simulation specification is an exact analytical method and does not 

model transmission or consider unit-level availability, so neither interface results, unit results, nor sample-level result 

disaggregations are available. 

When invoking assess in Julia, result specifications are provided as the final arguments to the function call, and a 

tuple of results are returned in that same order. (Note that a tuple is always returned, even if a single result specification 

is requested.) An example of requesting three result specifications is:

 

surplus, flow, genavail = assess(

 

sys, SequentialMonteCarlo(), Surplus(), Flow(), GeneratorAvailability()) 

Depending on the result specification, a result object may support indexing into it to obtain results for a specific time 

period, region, interface, or unit. For example, using the results returned above:

 

timestamp = ZonedDateTime(2020, 1, 1, 13, tz"UTC")

 

genname = "Generator 1"

 

regionname = "Region A"

 

interface = "Region A" => "Region B"

 

# get the sample mean and standard deviation of observed total system

 

# surplus capacity at 1pm UTC on January 1, 2020:

 

m, sd = surplus[timestamp]

 

# get the sample mean and standard deviation of observed surplus capacity

 

# in Region A at 1pm UTC on January 1, 2020:

 

m, sd = surplus[regionname, timestamp]

 

# get the sample mean and standard deviation of average interface flow

 

# between Region A and Region B:

 

m, sd = flow[interface]

 

# get the sample mean and standard deviation of interface flow

 

# between Region A and Region B at 1pm UTC on January 1, 2020:

 

m, sd = flow[interface, timestamp]

 

# get the vector of random generator availability states in every sample

 

# for Generator 1, at 1pm UTC on January 1, 2020:

 

states = genavail[genname, timestamp] 
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Results can be reported in different ways depending on the result specification being used, and not all types of indexing 

are appropriate for every result specification. For example, it would not make sense to aggregate interface flows across 

all interfaces in the system, or surplus power (potentially from energy-limited devices) across all time periods. 

The remainder of this chapter provides additional details about the six built-in result specification families in PRAS. 

4.1 Regional Results 

The Shortfall and Surplus result families are defined over regions, and their result objects can all be indexed into by 

region name. Table 2 outlines the simulation specifications that members of these families are compatible with, as 

well as the levels of disaggregation they support. 

Table 2. Regional result specification characteristics. 

(Conv = Convolution, NSMC = Non-Sequential Monte Carlo, SMC = Sequential Monte Carlo)

 

Result Specification

 

Units

 

supported by...

 

get results by...

 

Conv NSMC SMC

 

Sample

 

Region Timestep 

Region +

 

Timestep

 

Shortfall

 

Energy

 

• • •

 

• • • 

ShortfallSamples

 

• •

 

•

 

• • •

 

Surplus

 

Power

 

• • •

 

• • 

SurplusSamples

 

• •

 

•

 

• •

 

4.1.1 Shortfall 

The Shortfall family of result specifications ( Shortfall and ShortfallSamples ) reports on unserved energy 

occurring during simulations. As quantifying unserved energy is the core aspect of resource adequacy analysis, in 

practice almost every assessment requests a Shortfall-related result. The basic Shortfall specification is most 

commonly used and reports average shortfall results, while ShortfallSamples provides more detailed results at 

the level of individual simulations (samples). 

Shortfall result objects can be indexed into by region, timestep, both region and timestep, or neither. Indexing on 

neither (via result[] ) reports the total shortfall across all regions and time periods. 

Shortfall results are unique among the built-in result types in that the raw results can also be converted to specific 

probabilistic risk metrics ( EUE and LOLE ). For sampling-based methods, both metric estimates and the standard 

error of those estimates are provided. For example, after assessing the system, metrics across all regions and the full 

simulation horizon can be extracted as:

 

shortfall, = assess(sys, SequentialMonteCarlo(), Shortfall())

 

eue_overall = EUE(shortfall)

 

lole_overall = LOLE(shortfall) 

More specific metrics can be obtained as well:

 

region = "Region A"

 

period = ZonedDateTime(2020, 1, 1, 0, tz"America/Denver")

 

eue_period = EUE(shortfall, period)

 

lole_region = LOLE(shortfall, region)

 

eue_region_period = EUE(shortfall, region, period) 
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4.1.2 Surplus 

The Surplus family of result specifications ( Surplus and SurplusSamples ) reports on excess grid injection 

capacity (via generation or discharging) in the system. This can be used to study “near misses” where shortfall came 

close to occurring but did not actually happen. The Surplus specification reports average surplus across samples, 

while SurplusSamples reports simulation-level observations. 

Surplus capacity is reported in terms of power, and so results are always disaggregated by timestep (indexed either by 

timestep or both region and timestep). 

4.2 Interface Results 

The Flow and Utilization families of result specifications are defined over interfaces, and their result objects can all 

be indexed into by a pair of region names (indicating the source and destination regions for power transfer). Table 

3 outlines the simulation specifications that members of these families are compatible with, as well as the levels of 

disaggregation they support. 

Table 3. Interface result specification characteristics. 

(Conv = Convolution, NSMC = Non-Sequential Monte Carlo, SMC = Sequential Monte Carlo)

 

Result Specification

 

Units

 

supported by...

 

get results by...

 

Conv NSMC SMC

 

Sample

 

Interface Timestep 

Interface +

 

Timestep

 

Flow

 

Power

 

• •

 

• • 

FlowSamples

 

• •

 

•

 

• •

 

Utilization

 

–

 

• •

 

• • 

UtilizationSamples

 

• •

 

•

 

• •

 

4.2.1 Flow 

The Flow family of result specifications ( Flow and FlowSamples ) reports the direction and magnitude of power 

transfer on an interface. This can be used to study which regions are importers vs exporters of energy, either on average 

or at specific periods in time. The Flow specification reports average flow across all samples, while FlowSamples 

reports simulation-level observations. Flow results are directional, so the order in which the regions are provided when 

looking up a result will determine the result’s sign. For example:

 

m1, sd1 = flow["Region A" => "Region B"]

 

m2, sd2 = flow["Region B" => "Region A"]

 

m1 == -m2 # true

 

sd1 == sd2 # true 

Flow values are reported in terms of power, and results are always disaggregated by interface. Results that aggregate 

over time report the average flow over the time span. 

4.2.2 Utilization 

The Utilization family of result specifications ( Utilization and UtilizationSamples ) is similar to the Flow 

family, but reports the fraction of an interface’s available transfer capacity that is used in the direction of flow, instead 

of the flow power itself. Results can therefore range between 0 and 1. This metric can be useful for studying the 

impact of line outages and transmission congestion on unserved energy. The Utilization specification reports 

average flow across all samples, while UtilizationSamples reports simulation-level observations. Unlike Flow, 

Utilization results are not directional and so will report the same utilization regardless of the flow direction implied by 

the order of the provided regions: 
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util, = assess(sys, SequentialMonteCarlo(), Utilization())

 

util["Region A" => "Region B"] == util["Region B" => "Region A"] 

Utilization values are unitless, and results are always disaggregated by interface. Results that aggregate over time 

report the average utilization over the time span. 

4.3 Unit Results 

The Availability and Energy families of result specifications are defined over individual units, and their result objects 

can all be indexed into by a unit name and timestep. Table 4 outlines the simulation specifications that members of 

these families are compatible with, as well as the levels of disaggregation they support. 

Table 4. Unit result specification characteristics. 

(Conv = Convolution, NSMC = Non-Sequential Monte Carlo, SMC = Sequential Monte Carlo)

 

Result Specification

 

Units

 

supported by...

 

get results by...

 

Conv NSMC SMC

 

Sample

 

Unit Timestep 

Unit +

 

Timestep

 

GeneratorAvailability

 

–

 

•

 

•

 

• 

StorageAvailability

 

•

 

•

 

• 

GeneratorStorageAvailability

 

•

 

•

 

• 

LineAvailability

 

•

 

•

 

•

 

StorageEnergy

 

Energy

 

•

 

• • 

StorageEnergySamples

 

•

 

•

 

• • 

GeneratorStorageEnergy

 

•

 

• • 

GeneratorStorageEnergySamples

 

•

 

•

 

• •

 

4.3.1 Availability 

The Availability family of result specifications ( GeneratorAvailability , StorageAvailability , 

GeneratorStorageAvailability , and LineAvailability ) reports the availability state (available, or un- 

available due to an unplanned outage) of individual units in the simulation. The four result specification variants 

correspond to the four categories of resources: generators, storages, generator-storages, and lines. Availability is re- 

ported as a boolean value (with true indicating the unit is available, and false indicating it isn’t), and is always 

disaggregated by unit, timestep, and sample. 

4.3.2 Energy 

The Energy family of result specifications ( StorageEnergy , StorageEnergySamples , 

GeneratorStorageEnergy , and GeneratorStorageEnergySamples ) reports the energy state-of-charge 

associated with individual energy-limited resources. Result specification variants are available for selecting the cate- 

gory of energy-limited resource (storage or generator-storage) to report, as well as for requesting sample-level disag- 

gregation. Energy is always disaggregated by timestep and may also be disaggregated by unit (get the state of charge 

of a single unit) or aggregated across the system (get the sum of states of charge of all storage devices in the system). 

4.4 Additional Examples 

This section provides a more complete example of running a PRAS assessment, with a hypothetical analysis process 

making use of multiple different results.

 

using PRAS
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# Load in a system model from a .pras file.

 

# This hypothetical system has an hourly time resolution with an

 

# extent / simulation horizon of one year.

 

sys = SystemModel("mysystem.pras")

 

# This system has multiple regions and relies on battery storage, so

 

# run a sequential Monte Carlo analysis:

 

shortfall, utilization, storage = assess(

 

sys, SequentialMonteCarlo(samples=10000, seed=1),

 

Shortfall(), Utilization(), StorageEnergy())

 

# Start by checking the overall system adequacy:

 

lole = LOLE(shortfall) # event-hours per year

 

eue = EUE(shortfall) # unserved energy per year 

Suppose LOLE is below the target threshold but EUE seems high, suggesting large amounts of unserved energy are 

concentrated in a small number of hours. What do the hourly results show?

 

# Note 1: LOLE.(shortfall, many_hours) is Julia shorthand for calling LOLE

 

# on every timestep in the collection many_hours

 

# Note 2: Here results are in terms of event-hours per hour, which is

 

# equivalent to the loss-of-load probability (LOLP) for each hour

 

lolps = LOLE.(shortfall, sys.timestamps) 

One might see that a particular hour has an LOLP near 1.0, indicating that load is consistently getting dropped in that 

period. Is this a local issue or system-wide? One can check the unserved energy by region in that hour:

 

shortfall_period = ZonedDateTime(2020, 8, 21, 17, tz"America/Denver")

 

unserved_by_region = EUE.(shortfall, sys.regions.names, shortfall_period) 

Perhaps only one region (D) has non-zero EUE in that hour, indicating that this must be a load pocket issue. We can 

also look at the utilization of interfaces into that region in that period:

 

utilization["Region A" => "Region D", shortfall_period]

 

utilization["Region B" => "Region D", shortfall_period]

 

utilization["Region C" => "Region D", shortfall_period] 

These sample-averaged utilizations should all be very close to 1.0, indicating that power transfers are consistently 

maxed out; neighboring regions have power available but can’t send it to Region D. 

Transmission expansion is clearly one solution to this adequacy issue. Is local storage another alternative? One can 

check on the average state-of-charge of the existing battery in that region, both in the hour before and during the 

problematic period:

 

storage["Battery D1", shortfall_period-Hour(1)]

 

storage["Battery D1", shortfall_period] 

It may be that the battery is on average fully charged going into the event, and perhaps retains some energy during 

the event, even as load is being dropped. The device’s ability to mitigate the shortfall must then be limited only by 

its discharge capacity, so given that the event doesn’t last long, adding additional short-duration storage in this region 

would help. 
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Note that if the event occurred less consistently, this analysis could also have been performed on the subset of samples 

in which the event was observed, using the ShortfallSamples , UtilizationSamples , and StorageEnergySamples 

result specifications instead. 
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5 Capacity Credit Calculation 

Resource adequacy paradigms premised on adding resource capacities together to meet a planning reserve margin 

require the quantification of a “capacity credit” (sometimes called “capacity value”) for individual resources. While the 

process of assigning capacity credits is relatively straightforward for thermal generating units with consistent potential 

contributions to system adequacy throughout the day and year (assuming no fuel constraints), the contributions of 

variable and energy-limited resources can be much more difficult to represent as a single capacity rating. 

In these cases, an accurate characterization depends on the broader system context in which the resource operates. 

Probabilistically derived capacity credit calculations provide a technology-agnostic means of expressing the contri- 

butions of different resources (with diverse and potentially complicated operating characteristics and constraints) in 

terms of a common, simple measure of capacity. 

PRAS provides two different methods for mapping incremental resource adequacy contributions to generic capacity: 

Equivalent Firm Capacity ( EFC ) and Effective Load Carrying Capability ( ELCC ). In each case, the user must provide 

PRAS with two system representations: one that contains the study resource (the augmented system), and one that 

does not (the base system). The difference between the two systems is then quantified in terms of a capacity credit. 

By choosing what is included in the base case relative to the augmented case, the user can study either the average, 

portfolio-level capacity credit of a resource class (by excluding all resources of that class from the base case, and 

including them all in the augmented case) or the marginal capacity credit (by including almost all of the resource type 

in the base case, and adding a single incremental unit in the augmented case). 

Note that probabilistically derived capacity credit calculations always involve some kind of measurement of the reduc- 

tion in system risk associated with moving from the base system to the augmented system. If the base system’s risk 

cannot be reduced (perhaps because the base system’s shortfall risk is too small to obtain a non-zero estimate, or be- 

cause shortfall only occurs in load pockets elsewhere in the system), adequacy-based capacity credit metrics may not 

be meaningful. In these cases, the starting system may need to be modified, or a different capacity credit calculation 

method may be required. 

The remainder of this chapter provides details on the theoretical and practical aspects of using EFC and ELCC for 

capacity credit analysis in PRAS. Further mathematical details regarding capacity credit are available in Zachary and 

Dent (2011). 

5.1 Equivalent Firm Capacity (EFC) 

5.1.1 Theory 

EFC calculates the amount of idealized “firm” capacity (uniformly available across all periods, without ever going 

on outage) that is required to reproduce the observed resource adequacy benefit (reduction of a specific risk metric) 

associated with some study resource of interest. It requires both a base case system (without the study resource added) 

and an augmented system (with the study resource added). The analysis then proceeds as follows: 

1. Assess the shortfall risk of the base system according to the chosen metric (EUE or LOLE). 

2. Assess the (lower) shortfall risk of the augmented system according to the chosen metric. 

3. Reassess the shortfall risk of the base system after adding some amount of “firm” capacity. If the risk matches 

that of the augmented system, stop. The amount of firm capacity added is the Equivalent Firm Capacity of the 

study resource. 

4. If the base+firm and augmented system risks do not match, change the amount of firm capacity added to the 

base system, repeating until the chosen shortfall risk metrics for each system match. 

Typically, the counterfactual firm capacity is added to the system as a direct replacement for the study resource, and 

so is located in the same region (or distributed across multiple regions in corresponding proportions) as the study 

resource. PRAS uses a bisection method to find the appropriate total firm capacity to add to the base system. 
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5.1.2 Usage 

Performing an EFC assessment in PRAS requires specifying two different SystemModel s: one representing the base 

system, and a second representing the augmented system. It also requires specifying the probabilistic risk metric to 

use when comparing system risks, an upper bound on the EFC (usually, the nameplate capacity of the study resource) 

and to which region(s) the counterfactual firm capacity should be added. Finally, the simulation specification should 

be provided (any simulation method can be used). 

For example, to calculate EFC based on EUE for a resource in region A, with an upper EFC bound of 1000 MW 

(assuming the SystemModel s are represented in MW), using the sequential Monte Carlo simulation specification:

 

assess(base_system, augmented_system,

 

EFC{EUE}(1000, "A"), SequentialMonteCarlo()) 

If the study resources are spread over multiple regions (for example, 600 MW of wind in region A and 400 MW of 

wind in region B), the fraction of total firm capacity added to each region can be specified as:

 

assess(base_system, augmented_system,

 

EFC{EUE}(1000, ["A"=>0.6, "B"=>0.4]), SequentialMonteCarlo()) 

The EFC() specification accepts multiple optional keyword arguments, which can be provided in any order: 

p_value A floating point value giving the maximum allowable p-value from a one-sided hypothesis test. The test 

considers whether the lower risk metric used during bisection is in fact less than the upper risk metric. If the p- 

value exceeds this level, the assessment will terminate early due to a lack of statistical power. Note that this only 

matters for simulation specifications returning estimates with non-zero standard errors, i.e. Monte Carlo-based 

methods. Defaults to 0.05 . 

capacity_gap An integer giving the maximum desired difference between reported upper and lower bounds on ca- 

pacity credit. Once the gap between upper and lower bounds is less than or equal to this value, the assessment 

will terminate. Defaults to 1 . 

verbose A boolean value defaulting to false . If true , PRAS will output informative text describing the progress 

of the assessment. 

5.2 Effective Load Carrying Capability (ELCC) 

5.2.1 Theory 

ELCC quantifies the capacity credit of a study resource according to the amount of additional constant load the system 

can serve while maintaining the same shortfall risk. Like EFC, it requires both a base case system (without the study 

resource added) and an augmented system (with the study resource added). The analysis then proceeds as follows: 

1. Assess the shortfall risk of the base system according to the chosen metric (EUE or LOLE). 

2. Assess the (lower) shortfall risk of the augmented system according to the chosen metric. 

3. Reassess the shortfall risk of the augmented system after adding some amount of constant load. If the risk 

matches that of the base system, stop. The amount of constant load added is the Effective Load Carrying 

Capability of the study resource. 

4. If the base and augmented+load system risks do not match, change the amount of load added to the augmented 

system, repeating until the chosen shortfall risk metrics for each system match. 

ELCC calculations in a multi-region system require choosing where load should be increased. There are many possible 

options, including uniformly distributing new load across each region, distributing load proportional to total energy 

demand in each region, and adding load only in the region with the study resource. The “correct” choice will depend 
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on the goals of the specific analysis. Once the regional load distribution is specified, PRAS uses a bisection method to 

find the appropriate amount of total load to add to the system. 

5.2.2 Usage 

Performing an ELCC assessment in PRAS requires specifying two different SystemModel s: one representing the 

base system, and a second representing the augmented system. It also requires specifying the probabilistic risk metric 

to use when comparing system risks, an upper bound on the ELCC (usually, the nameplate capacity of the study 

resource) and to which region(s) the additional load should be added. Finally, the simulation specification should be 

provided. 

For example, to calculate ELCC based on EUE for a resource intending to serve load in region A, with an upper 

ELCC bound of 1000 MW (assuming the SystemModel s are represented in MW), using the convolution simulation 

specification:

 

assess(base_system, augmented_system,

 

ELCC{EUE}(1000, "A"), Convolution()) 

If the load serving assessment is to be spread over multiple regions (for example, 50% of load in region A and 50% in 

region B), the fraction of additional load added to each region can be specified as:

 

assess(base_system, augmented_system,

 

ELCC{EUE}(1000, ["A"=>0.5, "B"=>0.5]), Convolution()) 

The ELCC() specification accepts multiple optional keyword arguments, which can be provided in any order: 

p_value A floating point value giving the maximum allowable p-value from a one-sided hypothesis test. The test 

considers whether the lower risk metric used during bisection is in fact less than the upper risk metric. If the p- 

value exceeds this level, the assessment will terminate early due to a lack of statistical power. Note that this only 

matters for simulation specifications returning estimates with non-zero standard errors, i.e. Monte Carlo-based 

methods. Defaults to 0.05 . 

capacity_gap An integer giving the maximum desired difference between reported upper and lower bounds on ca- 

pacity credit. Once the gap between upper and lower bounds is less than or equal to this value, the assessment 

will terminate. Defaults to 1 . 

verbose A boolean value defaulting to false . If true , PRAS will output informative text describing the progress 

of the assessment. 

5.3 Capacity Credit Results 

Both EFC and ELCC assessments return CapacityCreditResult objects. These objects contain information on 

estimated lower and upper bounds of the capacity credit, as well as additional details about the process through which 

the capacity credit was calculated. Results can be retrieved as follows:

 

cc_result = assess(base_system, augmented_system, EFC{EUE}(1000, "A"),

 

SequentialMonteCarlo())

 

# Get lower and upper bounds on CC estimate

 

cc_lower = minimum(cc_result)

 

cc_upper = maximum(cc_result)

 

# Get both bounds at once

 

cc_lower, cc_upper = extrema(cc_result) 
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6 Extending PRAS 

PRAS provides opportunities for users to non-invasively build on its general simulation framework by redefining how 

simulations are executed, augmenting how results are reported, or both. This allows for customized analyses without 

requiring the user to modify code in the main PRAS package or implement their own model from scratch. 

To implement custom functionality, a user needs to define specific Julia data structures as well as implement function 

methods that operate on those structures. Julia’s multiple dispatch functionality can then identify and use these newly 

defined capabilities when the assess function is invoked appropriately. 

6.1 Custom Simulation Specifications 

Custom simulation specifications allow for redefining how PRAS models system operations. In addition to the data 

structures and methods listed here, defining a new simulation specification also requires defining the appropriate 

simulation-result interactions (see Section 6.3). 

6.1.1 New Data Structure Requirements 

The following new data structure (struct / type) should be defined in Julia: 

Simulation Specification 

The main type representing the new simulation specification. It should be a subtype of the SimulationSpec 

abstract type and can contain fields that store simulation parameters (such as the number of Monte Carlo samples to 

run or the random number generation seed to use). For example:

 

struct MyCustomSimSpec <: SimulationSpec

 

nsamples::UInt64

 

seed::UInt64

 

end 

6.1.2 New Method Requirements 

The following new function method should be defined in Julia: 

assess 

The method to be invoked when the assess function is called with the previously defined simulation specifica- 

tion. By convention, the method should take a SystemModel as the first argument, followed by a specific subtype 

of SimulationSpec , followed by one or more unspecified subtypes of ResultSpec . For example (using the 

MyCustomSimSpec type defined above):

 

function PRAS.assess(

 

sys::SystemModel, simspec::MyCustomSimSpec, resultspecs::ResultSpec...)

 

# Implement the simulation logic for MyCustomSimSpec here

 

# This will include simulation-result interaction calls to result

 

# recording methods, which will need to be implemented by any result

 

# specification wanting to be compatible with MyCustomSimSpec

 

end 
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6.2 Custom Result Specifications 

Custom result specifications allow for saving out additional information that may be generated during simulations of 

system operations. In addition to the data structures and methods listed here, defining a new result specification also 

requires defining the appropriate simulation-result interactions (see Section 6.3). 

6.2.1 New Data Structure Requirements 

The following new data structures (structs / types) should be defined in Julia: 

Result Specification 

The main type representing the result specification. It should be a subtype of the ResultSpec abstract type and can 

contain fields that store result parameters (although this is usually not necessary). For example:

 

struct MyCustomResultSpec <: ResultSpec

 

end 

Result 

The type of the data that is returned at the end of an assessment and stores any information to be reported to the 

end-user. It should be a subtype of the Result abstract type and should contain fields that store the desired results. 

For example:

 

struct MyCustomResult <: Result

 

myoutput1::Float64

 

myoutput2::Vector{Bool}

 

end 

6.2.2 New Method Requirements 

Indexing 

Result data should support index lookups to report overall results or values for specific time periods, regions, in- 

terfaces, units, etc. The specifics of how the result data is indexed will depend on the nature of the result type, 

but will likely involve implementing one or more of the following methods (here we assume the new result type is 

MyCustomResult ):

 

Base.getindex(result::MyCustomResult)

 

Base.getindex(result::MyCustomResult, region_or_unit::String)

 

Base.getindex(result::MyCustomResult, interface::Pair{String,String})

 

Base.getindex(result::MyCustomResult, period::ZonedDateTime)

 

Base.getindex(result::MyCustomResult,

 

region_or_unit::String, period::ZonedDateTime)

 

Base.getindex(result::MyCustomResult,

 

interface::Pair{String,String}, period::ZonedDateTime) 

Risk Metrics 

If the result includes information that can be used to calculate resource adequacy metrics, some or all of the following 

new function methods should be defined (here we assume the new result type is MyCustomResult ): 
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PRAS.LOLE(result::MyCustomResult)

 

PRAS.LOLE(result::MyCustomResult, region::String)

 

PRAS.LOLE(result::MyCustomResult, period::ZonedDateTime)

 

PRAS.LOLE(result::MyCustomResult, region::String, period::ZonedDateTime)

 

PRAS.EUE(result::MyCustomResult)

 

PRAS.EUE(result::MyCustomResult, region::String)

 

PRAS.EUE(result::MyCustomResult, period::ZonedDateTime)

 

PRAS.EUE(result::MyCustomResult, region::String, period::ZonedDateTime) 

If desired, new result specifications may define additional result-specific accessor methods as well. 

6.3 Simulation-Result Interfaces 

Result specifications need a way to map information produced by a simulation to outcomes of interest. The specifics 

of how this is implemented will vary between simulation specifications, but in general, a specific assess method 

will invoke another method that records abstract results. This recording method will then be implemented by all of 

the concrete result specifications wishing to support that simulation specification. A very simplified example of this 

pattern is:

 

function assess(

 

sys::SystemModel, simspec::MyCustomSimSpec, resultspecs::ResultSpec...)

 

# Implement the simulation logic for MyCustomSimSpec here,

 

# and collect full results

 

simulationdata = ...

 

# Store requested results

 

results = ()

 

for resultspec in resultspecs

 

results = (results..., record(simspec, resultspec, simulationdata))

 

end

 

return results

 

end

 

function record(

 

simspec::MyCustomSimSpec, resultspec::Shortfall, simulationdata)

 

# Map simulationdata to shortfall results here

 

return ShortfallResult(...)

 

end

 

function record(

 

simspec::MyCustomSimSpec, resultspec::Surplus, simulationdata)

 

# Map simulationdata to surplus results here

 

return SurplusResult(...)

 

end

 

function record(

 

simspec::MyCustomSimSpec, resultspec::MyCustomResultSpec, simulationdata)

 

# Map simulationdata to my custom results here

 

return MyCustomResult(...)

 

end 
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The remainder of this section explains how this is accomplished for the Convolution and SequentialMonteCarlo 

result specifications in particular. By implementing the types and methods described here, a new result specification 

can be made compatible with these existing simulation types. In each case, we assume the MyResultSpec <: 

ResultSpec and MyResult <: Result types have been previously defined. 

6.3.1 Convolution Interface 

Result Accumulator 

A convolution result accumulator incrementally collects relevant intermediate outcomes as available capacity distribu- 

tions for different time periods are evaluated.

 

# Define the accumulator structure

 

struct ConvMyResultAccumulator <: ResultAccumulator{Convolution,MyResultSpec}

 

# fields for holding intermediate data go here

 

end

 

# Help PRAS know which accumulator type to expect before one’s created

 

PRAS.ResourceAdequacy.accumulatortype(::Convolution, ::MyResultSpec) =

 

ConvMyResultAccumulator

 

# Initialize a new accumulator

 

function PRAS.ResourceAdequacy.accumulator(

 

sys::SystemModel, simspec::Convolution, resultspec::MyResultSpec)

 

return ConvMyResultAccumulator(...)

 

end 

record! 

Once unit outage rates and capacities in a given time period t have been processed (convolved) to create a probability 

distribution distr for shortfall or surplus capacity, the record! method extracts features of interest from the 

distribution and updates the corresponding accumulator acc in-place.

 

PRAS.ResourceAdequacy.record!(

 

acc::ConvMyResultAccumulator, t::Int, distr::CapacityDistribution) 

merge! 

For multithreaded assessments, PRAS creates one accumulator per worker thread (parallel task) and merges each 

thread’s accumulator information together once work is completed. merge! defines how an accumulator a should be 

updated in-place to incorporate the results obtained by another accumulator b .

 

PRAS.ResourceAdequacy.merge!(

 

a::ConvMyResultAccumulator, b::ConvMyResultAccumulator) 

finalize 

Once all of the thread accumulators have been merged down to a single accumulator reflecting results from all of the 

threads, this final accumulator acc is mapped to the final result output through a finalize method. 
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function PRAS.ResourceAdequacy.finalize(

 

acc::ConvMyResultAccumulator, sys::SystemModel)

 

return MyResult(...)

 

end 

6.3.2 Sequential Monte Carlo Interface 

Result Accumulator 

A sequential Monte Carlo result accumulator incrementally collects relevant intermediate outcomes as chronological 

simulations under different random samples are performed.

 

# Define the accumulator structure

 

struct SMCMyResultAccumulator <: ResultAccumulator{SequentialMonteCarlo,MyResultSpec}

 

# fields for holding intermediate data go here

 

end

 

# Help PRAS know which accumulator type to expect before one’s created

 

PRAS.ResourceAdequacy.accumulatortype(::SequentialMonteCarlo, ::MyResultSpec) =

 

SMCMyResultAccumulator

 

# Initialize a new accumulator

 

function PRAS.ResourceAdequacy.accumulator(

 

sys::SystemModel, simspec::SequentialMonteCarlo, resultspec::MyResultSpec)

 

return SMCMyResultAccumulator(...)

 

end 

record! 

Once system operations in a given time period t have been simulated within a given chronological sample sequence s , 

the record! method extracts outcomes of interest from one or both of the system’s current state and the solution 

to the period’s dispatch problem prob . These results are used to update the accumulator acc in-place.

 

PRAS.ResourceAdequacy.record!(

 

acc::SMCMyResultAccumulator, sys::SystemModel, state::SystemState,

 

prob::DispatchProblem, s::Int, t::Int) 

reset! 

At the end of each chronological sequence of time periods s , the reset! method updates the accumulator acc 

in-place to finalize recording of any results requiring information from multiple periods and prepare the accumulator 

to start receiving values from a new chronological simulation sequence.

 

PRAS.ResourceAdequacy.reset!(acc::SMCMyResultAccumulator, s::Int)

 

# Often no action is required here,

 

# so a simple one-line implementation is possible

 

PRAS.ResourceAdequacy.reset!(acc::SMCMyResultAccumulator, s::Int) = nothing 
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merge! 

Just as with the Convolution result spec, for multithreaded assessments PRAS creates one accumulator per worker 

thread (parallel task) and merges each thread’s accumulator information together once work is completed. merge! 

defines how an accumulator a should be updated in-place to incorporate the results obtained by another accumulator 

b .

 

PRAS.ResourceAdequacy.merge!(

 

a::SMCMyResultAccumulator, b::SMCMyResultAccumulator) 

finalize! 

Just as with the Convolution result spec, once all of the thread accumulators have been merged down to a single 

accumulator reflecting results from all of the threads, this final accumulator acc is mapped to the final result output 

through a finalize method.

 

function PRAS.ResourceAdequacy.finalize(

 

acc::SMCMyResultAccumulator, sys::SystemModel)

 

return MyResult(...)

 

end 
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