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Electro-Optical Measurement Techniques

Utilize the unique characteristics of photons across different regions of the electromagnetic spectrum to probe the
optical and electronic properties of chemical systems, materials and devices for energy conversion technologies

"'v t‘:!} g i
: N ’."Q = b et
Lo o8 o .. R E A
Bacterial/Cells [_Human Hair |
Electrio feld, £ Wavelength, A 100 nm 1 um 10 pm 100 ym 1 mm 10 mm 100 mm

Magnetic field, B Wave vector, k

e Frequency, f  1PHz 100 THz 10 THz 1 THz 100 GHz 10 GHz 1 GHz
T rrrrTTT T [rrrrTTeT T [rrrrTTeT T [rrrrTTeT T [rrrrTTeT T [rrrrTTeT T [rrrr T T LN
Energy, E 10 eV 1eV 100 meV 10 meV 1 meV 100 peV 10 peV 1 peVv
o .
raveling
Direction
Luminescence Spectroscopy Transient Optical Spectroscopy High-frequency Spectroscopy
. v v
/ —“#
\ thump !
hvexcitation” \\\v" {!ﬂ,‘ visible h\"pump
',’ -\ _ h 'probe 444“
M hVemission | A/\» v
Y
» Emission upon excitation by photon absorption | « Pump-probe techniques; pump photon » Pump-probe techniques, using THz (terahertz
(photoluminescence, PL) or carrier injection generates excited state, delayed photon spectroscopy) or GHz (microwave conductivity)
(electroluminescence, EL) probes excited-state dynamics probes
» Photon emission probes electronic transitions, | ¢ Sensitive to electronic (UV/visible/near-IR)  Sensitive to complex conductivity or dielectric

and vibrational (mid-IR) transitions function, providing information about carrier

in either visible or near-infrared
generation, transport, and losses

Steady-state and temporal information, with Time resolution spanning femtoseconds to
resolution spanning picoseconds to minutes microseconds

THz: time resolution spanning femtoseconds to
nanoseconds; GHz: time resolution spanning
nanoseconds to milliseconds

Technique variations can probe bulk, surface,

Amenable to imaging or microscopy for spatial
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CdTe CdSeTe Photophysics in Perovskite Quantum Dot Heterojunctions
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