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Foreword 
Solar energy technologies—such as photovoltaics (PV), solar heating and cooling, or 
concentrating solar power—provide solutions to the growing need for clean energy to mitigate 
climate change and to improve air quality. During the past few years, the use of solar energy has 
strongly progressed, in particular thanks to the impressive development of PV, which has 
become one of the most cost-competitive energy technologies overall. As the markets for the 
various solar energy systems increase, reliable and precise historical estimates and future 
projections of the solar resource are relevant not only to predict the energy output of solar 
installations and power systems but also increasingly to determine their expected 
competitiveness and economic return. 

This third edition of the Best Practices Handbook for the Collection and Use of Solar Resource 
Data for Solar Energy Applications has been prepared under the leadership of the National 
Renewable Energy Laboratory (NREL) together with a team of worldwide experts comprising 41 
authors from 14 countries working within the framework of the International Energy Agency’s 
Photovoltaic Power Systems Programme (IEA PVPS) Technology Collaboration Programme 
Task 16 on “Solar Resource for High Penetration and Large-Scale Applications.” This project is 
a joint task with the IEA’s Solar Power and Chemical Energy Systems (SolarPACES) 
Technology Collaboration Programme. Building on the previous work under the IEA’s Solar 
Heating and Cooling Technology Collaboration Programme, this handbook is a prominent 
example of technology collaboration across the different solar energy technologies and the 
respective IEA technology collaboration programs. 

This third edition of the handbook follows only less than four years after the previous edition, 
published in 2017, and marks the rapid evolution in the field of solar resource assessment and 
forecasting. It reflects the considerable progress that has occurred since then in the measurement 
and modeling of solar radiation and related topics. For instance, this edition features a new 
chapter on other relevant meteorological parameters, such as wind, temperature, humidity, 
pressure, surface albedo, and spectral distribution. Particular emphasis is on the progress of 
forecasts using all-sky images as well as on probabilistic and regional forecasts, which 
increasingly use artificial intelligence. For the practitioner, an important chapter deals with the 
application of solar resource data to solar energy projects, including performance modeling. 

With its comprehensive coverage of the state of the art of solar resource assessment and 
forecasting, this handbook serves as a reference document for a wide range of target audiences—
from science to solar energy professionals. Understanding the nature of solar radiation, its 
variations across the globe, and forecasting its evolution over time will increasingly contribute to 
make the use of solar energy more predictable. As the contribution of solar energy to the energy 
supply increases over time, the improved predictability is crucial for the optimization of future 
energy systems. 

The IEA PVPS Technology Collaboration Programme is pleased to publish the third edition of 
this handbook together with NREL. Most importantly, I would like to acknowledge the 
leadership of NREL, in particular Aron Habte and Manajit Sengupta; the IEA PVPS Task 
16/IEA SolarPACES Task 5 experts; and the support of the U.S. Department of Energy. 
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I hope this handbook finds many interested readers and contributes to the further deployment of 
solar energy worldwide. 

Stefan Nowak 
Chair, IEA PVPS Technology Collaboration Programme 
September 2020 
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Preface 
Jan Remund1 and Dave Renné2 
1 Meteotest AG 
2 Dave Renné Renewables, LLC 

As the world looks for carbon-free sources to meet final energy demand associated with heat, 
electrical power, and transport, energy from the sun stands out as the single most abundant 
energy resource on Earth. Harnessing this energy is the challenge and opportunity for achieving 
a carbon-free energy supply by 2050 to fulfil the 1.5°C target set by the Intergovernmental Panel 
on Climate Change1 and recommended in the 2015 Paris Agreement. Reducing carbon-dioxide 
emissions per energy unit and rapidly accessing the huge potential of solar energy will have the 
largest effects on achieving the 1.5°C target. 

Photovoltaics (PV), solar heating and cooling, and concentrating solar power (CSP) are the 
primary forms of energy applications using sunlight. These solar energy systems use different 
technologies, collect different fractions of the solar resource, and have different siting 
requirements and production capabilities. Reliable information about the solar resource is 
required for every solar energy application. This holds true for small installations on a rooftop as 
well as for large solar power plants; however, solar resource information is of the most critical 
interest in the latter case because such projects require a substantial investment, sometimes 
exceeding $1 billion in construction costs. Before such projects can be undertaken, the best 
possible information about the quality and reliability of the fuel source (i.e., solar radiation) must 
be made available. That is, project developers need to have reliable data about the solar resource 
available at specific locations, including historic trends with seasonal, daily, hourly, and 
(preferably) subhourly variability to predict the daily and annual performance of a proposed 
power plant. Without this information or its accuracy requirements, a bankable financial analysis 
is not possible. 

In response to a meeting of prominent CSP developers and stakeholders hosted by the U.S. 
Department of Energy (DOE) in September 2008, the National Renewable Energy Laboratory 
(NREL) produced a handbook to provide best practices for the use of solar resource data, which 
was titled Concentrating Solar Power: Best Practices Handbook for the Collection and Use of 
Solar Resource Data.2 The content was based on the experiences of scientists and engineers 
from industry, academia, and DOE for identifying the sources, quality, and methods for applying 
solar and meteorological data to CSP projects.  

During this same time, the International Energy Agency’s (IEA’s) Solar Heating and Cooling 
Programme (SHC) was hosting tasks on solar resource knowledge management (Task 36, 2005–
2011; Task 46, 2011–2016). This work was then followed by the IEA’s Photovoltaic Power 
Systems Programme (PVPS) Task 16 (2017–2020). These tasks have brought together the 
world’s foremost experts in solar energy meteorology. This group of experts agrees there is a 
need to maintain a collective document to disseminate the knowledge that was being developed 
through these tasks. It was decided that combining the efforts of the experts involved in the IEA 
tasks to build on the information in NREL’s original version of the handbook would provide the 

 
1 See https://www.ipcc.ch/report/ar4/syr/. 
2 See https://www.nrel.gov/docs/fy10osti/47465.pdf.  

https://www.ipcc.ch/report/ar4/syr/
https://www.nrel.gov/docs/fy10osti/47465.pdf
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best use of resources and deliver a handbook of outstanding quality to users. It was also decided 
that additional solar technologies, such as PV, would be incorporated along with additional 
aspects of energy meteorology that have become extremely important, such as solar forecasting. 
As a result, a second edition of the handbook appeared under a revised title, Best Practices 
Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 
published by NREL in 2017.3 This served as the final deliverable for IEA SHC Task 46. An 
update to that document concludes the work of the first phase of IEA PVPS Task 16 and is 
presented here as the third edition of the handbook. This edition is available in two different 
formats, as separate NREL and IEA PVPS reports. 

The solar PV industry has developed rapidly throughout the last few years based on ongoing 
technical evolution and shrinking prices. The size of the installations as well as the penetration 
levels have grown tremendously—both enhancing the needs for accurate solar data for planning 
and operation. Induced by these needs, there have been significant enhancements in the body of 
knowledge in the areas of solar resource assessment and forecasting. This third edition of the 
handbook updates and enhances the initial versions and presents the state of the art in a 
condensed form for all of its users.  

In the coming years, another stage of solar penetration will be reached: solar energy will not be 
only a small or growing part of power production but will become a major share of the 
production. This growth will increase the needs for high-quality and reliable resource data. The 
data needs for this growing industry are summarized in Table P-1. 

The structure of the handbook has been slightly updated since the previous editions. Chapter 1 
lays out the need for high-quality and reliable solar resource data to support the rapidly growing 
industry, and Chapter 2, as before, provides a basic tutorial on solar resources. Chapter 3 
presents a comprehensive overview of best practices for measuring solar radiation, including 
information gained under collaborative work completed during Task 16. Chapter 4 summarizes 
techniques used to develop estimates of solar resources from weather satellite data and numerical 
model predictions. Chapter 5 is a new chapter describing additional meteorological variables 
(besides radiation) that are required for accurate performance analysis. Chapter 6 describes an 
updated list of commonly used data sets available both in the public and private sectors, and 
Chapter 7 provides important information on both measured and modeled solar data uncertainty. 
Chapter 8 provides an update on recent developments in the ability to forecast solar resources 
over time horizons spanning from minutes to hours ahead and days ahead. All this information 
leads to Chapter 9, which provides data application techniques for the various stages of project 
development, from prefeasibility to routine operations, as shown in Table P-1. The outlook for 
future work is summarized in Chapter 10. 

 
3 See https://www.nrel.gov/docs/fy18osti/68886.pdf. 

https://www.nrel.gov/docs/fy18osti/68886.pdf
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Table P-1. Data Application Techniques for the Various Stages of Project Development 

 
Project developers, engineering procurement and construction firms, utility companies, system 
operators, energy suppliers, financial investors, organizations involved in planning and managing 
solar research programs, and others involved in solar energy systems planning and development 
should find this handbook to be a particularly valuable resource for the collection and 
interpretation of solar resource data. Readers are encouraged to provide feedback to the authors 
for future revisions and an expansion of the handbook’s scope and content. 
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1 Why Solar Resource Data Are Important to Solar 
Power 

Manajit Sengupta1 and Richard Meyer2 
1 National Renewable Energy Laboratory 
2 Suntrace GmbH 

Sunlight is the fuel for all solar energy technologies. For any solar generation source, knowledge 
of the quality and future reliability of the fuel is essential for determining the financial viability 
of any new project. This information is also important during operations for accurate control, 
analyses, and integration of the generation to the grid. The variability of the supply of sunlight 
represents the single greatest uncertainty in a solar power plant’s predicted performance. Solar 
resource information is needed for various stages of a plant’s development and operation, such 
as: 

• Historical long-term data for site selection during feasibility studies 
• Prediction of power plant output for plant design and financing 
• Real-time measurement and solar forecasting for plant and grid operations. 

Site selection requires information about numerous parameters for prospective project locations, 
including current land use, grid access, and proximity to load centers. The top priority though is 
determining if an adequate solar resource exists for a proposed project. For site selection, 
average annual solar irradiation at the site is the first selection criterion. Other meteorological 
parameters, such as ambient temperature and wind speed, may also play an important role. 
Further, lower seasonal variability could also be advantageous because of a more consistent 
match to the power demand. Because weather patterns can change from one year to another, 
many years of data are required to determine reliable average irradiation conditions and 
interannual variability. For this purpose, satellite-derived, high-quality historic solar radiation 
data sets covering at least 10 years are usually considered necessary for the site selection of large 
solar energy systems. 

As flat-priced electricity feed-in-tariff regulations get phased out, the economic yield of solar 
power systems increasingly depends on the solar production at specific times of the day as well 
as during various times of the year. Thus, for solar projects with variable prices, the temporal 
distribution of solar irradiance to estimate potential yields among competing sites might be 
critical even during site selection. At this early stage of project development, it is sufficient to 
study the temporal variability of the energy output throughout the year and typical daily cycles. 
As an alternative to multiple-year data sets, typical meteorological year (TMY) data for each site 
might be sufficient at this stage, in particular for smaller installations; however, the TMY cannot 
characterize interannual variability and might have limited use for certain projects. 

If an appropriate site is identified, the development of a power generation project will require 
more precise and detailed data sets. For site-specific techno-economic optimization of a solar 
system, the availability of high-resolution data is always beneficial. These data generally exist in 
the form of satellite-derived time series. To finance large solar power plants, data sets that are 
validated by ground measurements on or near the site are essential to reduce the yield risk. In 
addition to accurate solar radiation measurements, specialized meteorological stations usually 
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provide additional environmental parameters that help to optimize the sizing and proper selection 
of plant components. 

Accurate solar and meteorological stations are also valuable during plant commissioning because 
reliable measurements are the base for acceptance testing to demonstrate proof of fulfillment of 
technical specifications for heat or electric output. Although temporary measurement equipment 
can be used for acceptance testing, reliable measurements are essential for estimating real-time 
plant output to ensure high efficiency of the plant throughout its service life. The evaluation of 
plant output as a function of solar irradiance is the most important indicator of power plant 
performance. A reduction in overall efficiency implies a degradation of one or more power plant 
components or poor maintenance or operation. Although remotely-sensed data can be used for 
smaller systems, where performance accuracy can be relaxed, larger solar systems usually rely 
on ground-based measurements, which might be combined with near-real-time satellite-derived 
solar radiation data. Local ground measurements also assist in site-specific model validation and 
improvements of solar forecasts. 

Proper and accurate solar forecasts are important for the optimized use of solar power plants, 
both economically and operationally. They help to improve system operations, such as the 
optimal use of a storage tank in a solar thermal water heating system, a molten salt system for 
high-temperature applications, or a battery system in a photovoltaic (PV) system. With the fast 
growth of grid-connected solar electrical systems, solar radiation forecasts have become highly 
important for safe grid operations and efficient dispatching between power plants. Although 
short-term solar forecasts in the areas of high solar penetration enable efficient dispatch, day-
ahead forecasts enable accurate unit commitment, leading to efficient planning of reserves.  

This handbook covers all pertinent aspects of solar radiation that are relevant for the planning 
and operation of PV plants, solar thermal heating and cooling systems, concentrating solar 
thermal plants, and the electric grid. Chapter 2 explains the basic concepts and terms that are 
essential to understanding the subsequent chapters. Chapter 3 describes the state of the art in 
measuring solar radiation on the Earth’s surface and offers methods and protocols to produce a 
data set that withstands the scrutiny of due diligence. Chapter 4 focuses on modeling solar 
radiation. It introduces the theory of radiative transfer in the atmosphere, facilitating an 
understanding of current practices for calculating the incident solar radiation at the Earth’s 
surface. Today, many data sets are calculated using radiative transfer models with observations 
from operational meteorological satellites as input, and these examples are also presented in 
Chapter 4. Chapter 5 introduces additional sources of meteorological and advanced solar 
parameters that are required for improved accuracy in solar modeling. Several examples of solar 
resource data sets—both satellite-derived and ground-measured data—are presented in Chapter 
6. It is important to understand the uncertainty of any data set, whether measured or modeled; 
therefore, Chapter 7 provides an understanding of how to estimate and interpret uncertainty in 
both measured and modeled data sets. Radiative transfer calculations, similar to those described 
in Chapter 4, are used to forecast solar radiation and are described in Chapter 8. This chapter 
describes nowcasting (forecasting for a few hours ahead) by extrapolating satellite-derived and 
ground-mounted observations as well as solar radiation forecasts beyond the first few hours 
using numerical weather prediction models. Chapter 9 summarizes various techniques for 
estimating solar power using data sets described in previous chapters, and it recommends best 
practices for the application of data to various stages of a solar power project. Significant work 
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remains to improve the accuracy, reliability, and level of detail of solar resource products. Many 
open questions remain in the field of solar resource assessment, and Chapter 10 provides an 
overview of how these outstanding issues could be resolved in the future. Research leading to 
these solutions could be through the development of new or improved techniques, the application 
of new measurement techniques, the use of new meteorological satellites, the development of 
improved weather models, or, ideally, the use of a smart combination of these approaches.  
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2 Overview of Solar Radiation Resource Concepts 
Aron Habte,1 Thomas Stoffel,2 Christian Gueymard,3 Daryl Myers,4 Philippe Blanc,5 
Stefan Wilbert,6 and Frank Vignola7 
1 National Renewable Energy Laboratory 
2 Solar Resource Solutions, LLC 
3 Solar Consulting Services 
4 National Renewable Energy Laboratory, retired 
5 MINES ParisTech 
6 German Aerospace Center (DLR) 
7 University of Oregon 

2.1 Introduction 
Describing the relevant concepts and applying a consistent terminology are important to the 
usefulness of any handbook. This chapter discusses standard terms that are used to illustrate the 
key characteristics of solar radiation—the fuel for all solar technologies. 

Beginning with the Sun as the source, this chapter presents an overview of the effects of Earth’s 
orbit and atmosphere on the possible types and magnitudes of solar radiation available for energy 
conversion. An introduction to the concepts of measuring and modeling solar radiation is 
intended to prepare the reader for the more in-depth treatments in Chapter 3–Chapter 6. This 
overview concludes with an important discussion of the estimated uncertainties associated with 
solar resource data as affected by the experimental and modeling methods used to produce the 
data. The reader is referred to Chapter 7 for a detailed treatment of uncertainty in measurement 
and modeling. 

2.2 Radiometric Terminology 
Before discussing solar radiation further, it is important to understand basic radiometric terms. 
Radiant energy, flux, power, and other concepts used in this handbook are summarized in Table 
2-1. 

Table 2-1. Radiometric Terminology and Units 

Quantity Symbol Unit Unit Description 

Radiant energy Q Joule J Energy 

Radiant flux Φ Watt W Radiant energy per unit of time (radiant power) 

Radiant intensity I Watt per steradian W/sr Power per unit solid angle 

Radiant emittance M Watt per square meter W/m² Power emitted from a surface 

Radiance L Watt per steradian per 
square meter W/(sr·m²) Power per unit solid angle per unit of projected 

source area 

Irradiance E Watt per square meter W/m² Power incident on a unit area surface 

Spectral irradiance Eλ Watt per square meter 
per nanometer W/(m²·nm) Power incident on a unit area surface per unit 

wavelength 

Irradiation H Joule per square meter 
J/m² 

 
 
 
 
 

Energy accumulated on a unit area surface 
during a period; a more practical energy unit is 
kilowatt-hours per square meter (1 kWh / m² = 
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2.3 Extraterrestrial Irradiance 
Any object with a temperature above absolute zero Kelvin emits radiation. With an effective 
surface temperature of ≈5800 K, the Sun behaves like a quasi-static blackbody and emits 
radiation over a wide range of wavelengths, with a distribution that is close to that predicted by 
Planck’s law (Figure 2-1). This constitutes the solar spectral power distribution, or solar 
spectrum. For terrestrial applications, the useful solar spectrum, also called the shortwave 
spectrum (≈290–4000 nm), includes the spectral regions called ultraviolet (UV), visible, and 
near-infrared (NIR) (Figure 2-1). The latter is the part of the infrared spectrum that is below 
4000 nm in the solar spectrum. In contrast, the longwave (or far-infrared) spectrum extends 
beyond 4 µm, where the planetary thermal emission is dominant. Based on a recent 
determination (Gueymard 2018a), most spectral irradiance (98.5%) of the extraterrestrial 
spectrum (ETS), is contained in the wavelength range from 290–4000 nm. In what follows, 
broadband solar radiation will always refer to this spectral range, unless specified otherwise. 

 
Figure 2-1. Reference ETS (ASTM E490-19) and 5,800 K blackbody distribution using Planck’s law. 

Image by Philippe Blanc, MINES ParisTech/ARMINES 

Various ETS distributions have been derived based on ground measurements, extraterrestrial 
measurements, and physical models of the Sun’s output. Some historical perspective is offered 
by Gueymard (2004, 2006, 2018a). All distributions contain some deviations from the current 
standard extraterrestrial spectra used by ASTM Standard E490 (2019) (Figure 2-1). A new 
generation of ETS distribution, based on recent spectral measurements from space, was recently 
published (Gueymard 2018a). 

2.4 Solar Constant and Total Solar Irradiance 
The total radiant power from the Sun is nearly constant. The solar output (radiant emittance) is 
called the total solar irradiance (TSI) and can be obtained as the integration of the ETS at 1 AU 
(astronomical unit, approximate average Sun-Earth distance, discussed in Section 2.5) over all 
wavelengths. TSI was commonly called the solar constant (SC) until slight temporal variations 
were discovered (Fröhlich and Lean 1998, 2004; Kopp and Lean 2011). The solar constant is 
now defined as the long-term mean TSI. Both TSI and solar constant are made independent from 
the actual Sun-Earth distance by evaluating them at 1 AU. Small but measurable changes in the 
Sun’s output and TSI are related to its magnetic activity. There are cycles of approximately 11 
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years in solar activity, which are accompanied by a varying number of sunspots (cool, dark areas 
on the Sun) and faculae (hot, bright spots). TSI increases during high-activity periods because 
the numerous faculae more than counterbalance the effect of sunspots. From an engineering 
perspective, these TSI variations are relatively small, so the solar constant concept is still useful 
and perfectly appropriate in solar applications.  

Figure 2-2 shows the latest version of a composite TSI time series based on multiple spaceborne 
instruments that have monitored TSI since 1978 using a variety of instruments and absolute 
scales (Gueymard 2018b). Estimates are also used for the period from 1976–1978 to make this 
time series start at the onset of solar cycle 21. The solar cycle numbers are indicated for further 
reference. (Solar cycle 25 is assumed to have started at the end of 2019, but this is still debated 
as of this writing.) Figure 2-2 shows the solar constant (always evaluated at 1 AU) as a 
horizontal solid line.  

  
Figure 2-2. Four solar cycles show the temporal variations of daily TSI in a composite 

reconstruction of the 1976–2017 time series based on observations from spaceborne radiometers 
after corrections and gap-filling. The thick line indicates the 27-day moving average 

(corresponding to the 27-day mean solar rotation period), and the circled numbers refer to the 
solar cycle designation. The horizontal line shows the solar constant (1361.1 W/m2). Image based 

on data published in Gueymard (2018b)  

On a daily basis, the passage of large sunspots results in much lower TSI values than the solar 
constant. The measured variation in TSI resulting from the sunspot cycle is at most ±0.2%, only 
twice the precision (i.e., repeatability—not total absolute accuracy, which is approximately 
±0.5%) of the most accurate radiometers measuring TSI in space. There is, however, some large 
variability in a few spectral regions—especially the UV (wavelengths less than 400 nm)—caused 
by solar activity. 

Historic determinations of solar constant have fluctuated throughout time (Gueymard 2006; 
Kopp 2016). At the onset of the 21st century, it was 1366.1 ± 7 W/m2 (ASTM 2000; Gueymard 
2004). More recent satellite observations using advanced sensors and better calibration methods, 
however, have shown that the solar constant is somewhat lower: ≈1361 W/m2. After careful 
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reexamination and corrections of decades of past satellite-based records, Gueymard (2018b) 
proposed a revised value of 1361.1 W/m2.  

According to astronomical computations such as those made by the National Renewable Energy 
Laboratory’s (NREL’s) solar position software (https://midcdmz.nrel.gov/spa/), using SC ≈1361 
W/m2, the seasonal variation of ±1.7% in the Sun-Earth distance causes the irradiance at the top 
of the Earth’s atmosphere to vary from ≈1409 W/m2 (+3.5%) near January 3 to ≈1315 W/m2 (–
3.3%) near July 4. This seasonal variation is systematic and deterministic; hence, it does not 
include the daily (somewhat random) or cyclical variability in TSI induced by solar activity, 
which was discussed previously. This variability is normally less than ±0.2% and is simply 
ignored in the practice of solar resource assessments. 

2.5 Solar Geometry 
The amount of radiation exchanged between two objects is affected by their separation distance. 
The Earth’s elliptical orbit (eccentricity 0.0167) brings it closest to the Sun in January and 
farthest from the Sun in July, as mentioned. The average Sun-Earth distance is close to the new 
definition of the AU, which is exactly 149,597,870,700 m, as introduced in 2012 by the 
International Astronomical Union and recognized as a Système International (SI) unit in 2014 by 
the International Bureau of Weights and Measures (BIPM). Figure 2-3 shows the Earth’s orbit in 
relation to the northern hemisphere’s seasons, caused by the average ≈23.4° tilt of the Earth’s 
rotational axis with respect to the plane of the orbit. The solar irradiance available at the top of 
atmosphere (TOA) is called the extraterrestrial radiation (ETR). ETR (see Eq. 2-1) is the power 
per unit area, or flux density, in Watts per square meter (W/m2), radiated from the Sun and 
available at the TOA. Just like ETS, ETR varies with the Sun-Earth distance (r) and annual mean 
distance (r0): 

 ETR = TSI (r0/r)2 (2-1) 

 
Figure 2-3. Schematic of the Earth’s orbit. The Earth’s orbit around the Sun is slightly elliptic. 

Image by NREL 

 

As indicated in Section 2.4, it is customary to neglect temporal variations in TSI so that TSI can 
be replaced by the solar constant in Eq. (2-1) for simplification. The Sun-Earth distance 

https://midcdmz.nrel.gov/spa/
https://en.wikipedia.org/wiki/International_Bureau_of_Weights_and_Measures
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correction factor, (r0/r)2, in Eq. 2-1 is normally obtained from sun position algorithms, such as 
those described in Section 2.6.1. Daily values of sufficient accuracy for most applications can 
also be found in tabulated form—e.g., Iqbal (2012). 

From the TOA, the sun appears as a very bright disk with an angular diameter of ≈0.5° (the 
actual apparent diameter varies by a small amount, ±1.7%, because the Sun-Earth distance 
varies) surrounded by a completely black sky, apart from the light coming from stars and planets. 
This angle can be determined from the distance between the Earth and the Sun and the latter’s 
apparent diameter. More precisely, a point at the top of the Earth’s atmosphere intercepts a cone 
of light from the hemisphere of the Sun facing the Earth with a total angle of 0.53°±1.7% at the 
apex and a divergence angle from the center of the disk of 0.266° (half the apex angle, yearly 
average). Because the divergence angle is very small, the rays of light emitted by the Sun are 
nearly parallel; these are called the solar beam. The interaction of the solar beam with the 
terrestrial atmosphere is discussed next. 

2.6 Solar Radiation and the Earth’s Atmosphere 
The Earth’s atmosphere can be seen as a continuously variable filter for the solar ETR as it 
reaches the surface. Figure 2-4 illustrates the “typical” absorption of solar radiation by 
atmospheric constituents such as ozone, oxygen, water vapor, or carbon dioxide. The amount of 
atmosphere the solar photons must traverse, also called the atmospheric path length or air mass 
(AM), depends on the relative position of the observer with respect to the sun’s position in the 
sky (Figure 2-4). By convention, air mass one (AM1) is defined as the amount of atmospheric 
path length observed when the sun is directly overhead. As a first approximation, and for low 
zenith angles, air mass is geometrically related to the solar zenith angle (SZA). Actually, air 
mass is approximately equal to the secant of SZA, or 1/cos(SZA). Air mass 1.5 (AM1.5) is a key 
quantity in solar applications and corresponds to SZA = 48.236° (Gueymard, Myers, and Emery, 
2002). Air mass two (AM2) occurs when SZA is ≈60° and has twice the path length of AM1. By 
extrapolation, one refers to the value at the TOA as AM0 (Myers 2013).  

 
Figure 2-4. Scattering of the direct-beam photons from the sun by the atmosphere produces 
diffuse radiation that varies with air mass. Image by NREL, modified from Marion et al. (1992) 
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The cloudless atmosphere contains gaseous molecules and particulates (e.g., dust and other 
aerosols) that reduce the ETR as it progresses farther down through the atmosphere. This 
reduction is caused mostly by scattering (a change of a photon’s direction of propagation) and 
also by absorption (a capture of radiation). Finally, clouds are the major elements that modify the 
ETR (also by scattering and absorption) on its way to the surface or to a solar collector.  

Absorption converts part of the incoming solar radiation into heat and raises the temperature of 
the absorbing medium. Scattering redistributes the radiation in the hemisphere of the sky dome 
above the observer, including reflecting part of the radiation back into space. The longer the path 
length through the atmosphere, the more radiation is absorbed and scattered. The probability of 
scattering—and hence of geometric and spatial redistribution of the solar radiation—increases as 
the path (air mass) from the TOA to the ground increases. 

Part of the radiation that reaches the Earth’s surface is eventually reflected back into the 
atmosphere. A fraction of this returns to the surface through a process known as backscattering. 
The actual geometry and flux density of the reflected and scattered radiation depend on the 
reflectivity and physical properties of the surface and constituents in the atmosphere, especially 
clouds and aerosols. 

Based on these interactions between the radiation and the atmosphere, the terrestrial solar 
radiation is divided into two components: direct beam radiation, which refers to solar photons 
that reach the surface without being scattered or absorbed, and diffuse radiation, which refers to 
photons that reach the observer after one or more scattering events with atmospheric 
constituents. These definitions and their usage for solar energy are discussed in detail in Section 
2.7. 

Ongoing research continues to increase our understanding of the properties of atmospheric 
constituents, ways to estimate them, and their impact on the magnitude of solar radiation in the 
atmosphere at various atmospheric levels and at the surface. This is of great importance to those 
who measure and model solar radiation fluxes (see Chapter 3–Chapter 6). 

2.6.1 Relative Motions of the Earth and Sun 
The amount of solar radiation available at the TOA is a function of TSI and the Sun-Earth 
distance at the time of interest, per Eq. (2-1). The slightly elliptical orbit of the Earth around the 
Sun was briefly described in Section 2.5 and is shown in Figure 2-3. The Earth rotates around an 
axis through the geographic north and south poles, inclined at an average angle of ≈23.4° to the 
plane of the Earth’s orbit. The axial tilt of the Earth’s rotation also results in daily variations in 
the solar geometry during any year. 

In the Northern Hemisphere, at latitudes above the Tropic of Cancer (23.437° N) near midday, 
the sun is low on the horizon during winter and high in the sky during summer. Summer days are 
longer than winter days because of progressive changes where the sun rises and sets. Similar 
transitions take place in the Southern Hemisphere. All these changes result in changing geometry 
of the solar position in the sky with respect to time of year and specific location. Similarly, the 
resulting yearly variation in the solar input creates seasonal variations in climate and weather at 
each location. The solar position in the sky corresponds to topocentric angles, as follows: 
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• The solar elevation angle is defined as the angle formed by the direction of the sun and 
the local horizon. It is the complement of SZA, i.e., 90°–SZA. 

• The solar azimuth angle is defined as the angle formed by the projection of the direction 
of the sun on the horizontal plane defined eastward from true north, following the 
International Organization for Standardization (ISO) 19115 standard. For example, 0° or 
360° = due north, 90° = due east, 180° = due south, and 270° = due west. 

An example of apparent sun path variations for various periods of the year is depicted in Figure 
2-5. Because of their significance in performing any analysis of solar radiation data or any 
radiation model calculation, the use of solar position calculations of sufficient accuracy is 
necessary, such as those derived from NREL’s Solar Position Algorithm4 (Reda and Andreas 
2003, 2004). This algorithm predicts solar zenith and azimuth angles as well as other related 
parameters such as the Sun-Earth distance and the solar declination. All this is possible in the 
period from 2000 B.C. to 6000 A.D. with an SZA standard deviation of only ≈0.0003° (1''). To 
achieve such accuracy during a long period, this algorithm is very time consuming, with 
approximately 2300 floating operations and more than 300 direct and inverse trigonometric 
functions at each time step. Other algorithms exist, differing in the attained accuracy and in their 
period of validity. Various strategies exist to reduce operations, such as reducing the period of 
validity while maintaining high accuracy (Blanc and Wald 2012; Grena 2008; Blanco-Muriel et 
al. 2001) or keeping a long period while reducing the accuracy (Michalsky 1988). 

 
Figure 2-5. Apparent sun path variations during a typical year in Denver, Colorado. Image from the 

University of Oregon Solar Radiation Monitoring Laboratory 
(http://solardata.uoregon.edu/SunChartProgram.php) 

 

 
4 See http://www.nrel.gov/midc/spa/.  

http://solardata.uoregon.edu/SunChartProgram.php
http://www.nrel.gov/midc/spa/
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2.7 Solar Resource and Components 
Radiation can be transmitted, absorbed, or scattered in varying amounts by an attenuating 
medium, depending on wavelength. Complex interactions of the Earth’s atmosphere with solar 
radiation result in three fundamental broadband components of interest to solar energy 
conversion technologies: 

• Direct normal irradiance (DNI): solar (beam) radiation from the sun’s disk itself—of 
interest to concentrating solar technologies (CST), tracked collectors, and other solar 
technologies because of incidence angle dependent efficiency 

• Diffuse horizontal irradiance (DHI): scattered solar radiation from the sky dome 
(excluding the sun and thus DNI)5 

• Global horizontal irradiance (GHI): geometric sum of the direct and diffuse horizontal 
components (also called the total hemispheric irradiance) 

• Global tilted irradiance (GTI): geometric sum of the direct, sky diffuse, and ground-
reflected components on a tilted surface. GTI is also referred to as the plane-of-array 
(POA) irradiance in the photovoltaic (PV) literature. 

• Global normal irradiance (GNI): geometric sum of the direct, sky diffuse, and ground-
reflected components on a tracking surface that remains perpendicular to the sunbeam. 

The radiation components are shown in Figure 2.6.  

 
Figure 2-6. Solar radiation components resulting from interactions with the atmosphere. Image by 

Al Hicks, NREL 

 

 
5 The diffuse horizontal irradiance is also frequently referred to as DIF in the literature to avoid confusion with the 
direct horizontal irradiance, which is also a quantity of interest in various applications. 
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These basic solar components are related to SZA by the fundamental expression:  

 GHI = DNI × cos(SZA) + DHI (2-2a) 

 GTI = DNI × cos(AI) + DHI × SVF + RHI × GVF (2-2b) 

where AI is the angle of incidence of the solar beam onto the tilted surface, SVF is the sky view 
factor between the collector and the visible part of the sky, GVF is the ground view factor 
between the collector and the visible part of the foreground surface, and RHI is the global 
reflected horizontal irradiance, which is discussed further in Chapter 5, Section 5.11.  

2.7.1 Direct Normal Irradiance and Circumsolar Irradiance 
By definition, DNI is the irradiance on a surface perpendicular to the vector (i.e., normal 
incidence) from the observer to the center of the sun caused by radiation that was not scattered 
by the atmosphere out of the region appearing as the solar disk (WMO 2018). This strict 
definition is useful for atmospheric physics and radiative transfer models, but it results in a 
complication for ground observations: it is not possible to measure whether or not a photon was 
scattered if it reaches the observer from the direction in which the solar disk is seen. Therefore, 
DNI is usually interpreted in a less stringent way in the world of solar energy. Direct solar 
radiation is understood as the “radiation received from a small solid angle centered on the sun’s 
disk” (ISO 2018). The size of this “small solid angle” for DNI measurements is recommended to 
be 5 ∙ 10-3 sr (corresponding to ≈2.5° half angle) (WMO 2018). This recommendation is 
approximately 10 times larger than the angular radius of the solar disk itself based on no-
atmosphere geometry, whose yearly average is 0.266°, as mentioned earlier. This relaxed 
definition is necessary for practical reasons because the instruments used for DNI measurement 
(pyrheliometers) need to track or follow the sun throughout its path of motion in the sky, and 
small tracking errors are to be expected. The relatively large field of view (FOV) of 
pyrheliometers reduces the effect of such tracking errors. Similarly, DHI must be obtained by 
masking the sun from the pyranometer detector with a small shade. An FOV with a radius of 2.5° 
is necessary to avoid the impact of tracking errors (e.g., wind-induced tracking errors) and to 
maintain an FOV complementary to that of the pyrheliometer. 

To understand the definition of DNI and how it is measured by pyrheliometers in practice, the 
role of circumsolar radiation—scattered radiation coming from the annulus surrounding the solar 
disk—must be discussed. (The reader is referred to the detailed review, based on both 
experimental and modeling results, found in Blanc et al. (2014).) Because of forward scattering 
of direct sunlight in the atmosphere, the circumsolar region closely surrounding the solar disk 
(solar aureole) looks very bright and can alter the observed sunshape (Buie et al. 2003). The 
sunshape—a quantity not to be confused with the “shape of the Sun”—is the azimuthally 
averaged radiance profile as a function of the angular distance from the center of the sun 
normalized to 1 at the apparent sun’s disc center. The radiation coming from this region is called 
the circumsolar radiation. For the typical FOV of modern pyrheliometers (2.5°), circumsolar 
radiation contributes a variable amount, depending on atmospheric conditions, to the DNI 
measurement. Determining the magnitude of the circumsolar radiation is of interest in CST 
applications because DNI measurements are typically larger than the beam irradiance that can be 
used in concentrating systems. This causes an overestimate of CST plant production because the 
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FOV of the concentrators (typically of the order of 1° or even less) is much smaller than the 
FOV of the pyrheliometers that are used on-site to determine the incident DNI.  

The circumsolar contribution to the observed DNI can be quantified if the radiance distribution 
within the circumsolar region and the so-called penumbra function of the pyrheliometer are 
known. The latter is a characteristic of the instrument and can be derived from the 
manufacturer’s data. The former, however, is difficult to determine experimentally with current 
instrumentation. For instance, a method based on two commercial instruments (a sun and aureole 
measurement system and a sun photometer) has been presented (Gueymard 2010; Wilbert et al. 
2013). Other instruments that can measure the circumsolar irradiance are documented in Wilbert 
et al. (2012, 2018), Kalapatapu et al. (2012), and Wilbert (2014). 

To avoid additional measurements, substantial modeling effort is required and might involve 
estimation of the spectral distribution (Gueymard 2001). Some specific input data are rarely 
accessible in real time, particularly when a thin ice cloud (cirrus) reduces DNI but considerably 
increases the circumsolar contribution. Despite these difficulties and because of the special needs 
of the solar industry, new specialized radiative models have been developed recently to evaluate 
the difference between the true and apparent DNI using various types of observations (Eissa et 
al. 2018; Räisänen and Lindfors 2019; Sun et al. 2020; Xie et al. 2020). More research is being 
conducted to facilitate the determination of the circumsolar fraction at any location and any 
instant as part of solar resource assessments. Further information on circumsolar radiation can be 
found in Chapter 5, Section 5.9. 

2.7.2 Diffuse Irradiance 
A cloudless atmosphere absorbs and scatters some radiation out of the direct beam before it 
reaches the Earth’s surface. Scattering occurs in essentially all directions, away from the specific 
path of the incident beam radiation. This scattered radiation constitutes the sky diffuse radiation 
in the hemisphere above the surface. In particular, the Rayleigh scattering theory explains why 
the sky appears blue (short wavelengths, in the blue and violet parts of the spectrum, are 
scattered more efficiently by atmospheric molecules) and why the sun’s disk appears yellow-red 
at sunrise and sunset (blue wavelengths are mostly scattered out of the direct beam, whereas the 
longer red wavelengths undergo less scattering, resulting in a red shift). As mentioned above, the 
sky radiation in the hemisphere above the local surface is referred to as DHI. A more technical 
and practical definition of DHI is that it represents all radiation from the sky dome except what is 
considered DNI; hence, in practice, DHI is the total diffuse irradiance from the whole-sky 
hemisphere minus the 2.5° annulus around the sun center. 

DHI includes radiation scattered by molecules (Rayleigh effect), aerosols (Mie effect), and 
clouds (if present). It also includes the backscattered radiation that is first reflected by the surface 
and then re-reflected downward by the atmosphere or clouds. The impact of clouds is difficult to 
model because they have optical properties that can vary rapidly over time and can also vary 
considerably over the sky hemisphere. Whereas a single and homogenous cloud layer can be 
modeled with good accuracy, complex three-dimensional cloud scenes present extreme 
challenges (Hogan and Shonk 2012). 
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2.7.3 Global Irradiance 
The total hemispherical solar radiation on a horizontal surface, or GHI, is the sum of DHI and 
the projected DNI to the horizontal surface, as expressed by Eq. 2-2. This fundamental equation 
is used for data quality assessments, some solar radiation measurement system designs, and 
atmospheric radiative transfer models addressing the needs for solar resource data. Because GHI 
is easier—and less expensive—to measure than DNI or DHI, most radiometric stations in the 
world provide only GHI data. It is then necessary to estimate DNI and DHI by using an 
appropriate separation model, as discussed in the next section. 

2.7.4 Solar Resources for Solar Energy Conversion 
Obtaining data time series or temporal averages of the solar radiation components—most 
importantly, GHI and DNI—that relate to a conversion system is the first step in selecting the 
site-appropriate technology and evaluating the simulated performance of specific system designs. 
Systems with highly concentrating optics rely solely on DNI. Low-concentration systems might 
also be able to use some sky diffuse radiation. Flat-plate collectors, fixed or tracking, can use all 
downwelling radiation components as well as radiation reflected from the ground if in the collector’s 
FOV. 

Solar radiation data are required at all stages of a solar project. Before construction, long time 
series of historical data are necessary to quantify the solar resource and its variability. During 
operation, real-time data are typically necessary to verify the performance of the system and to detect 
problems. In both cases, the required data can be obtained from measurements, modeling, or a 
combination of both. Typically, measurements are not used exclusively for the early stages of 
development because (1) long time series of measured irradiance data generally do not exist at the 
location of interest; (2) measured data, when available, most likely contain gaps that must be filled by 
modeling; and (3) conducting quality measurements is considerably more costly than operating 
models (assuming, of course, that the otherwise prohibitively high costs of satellite operations and 
data management are borne by other agencies). High-quality measurements remain essential, 
however, because their uncertainty is normally significantly less than that of modeled data (see 
Chapter 7), and thus they can serve to validate models and even improve the quality of long-term 
modeled time series through a “site adaptation” process (see Chapter 4). The development and 
validation of solar radiation models is an intricate procedure that requires irradiance observations 
obtained with very low measurement uncertainty, typically obtained only at research-class stations. 

GHI is measured at a relatively large number of stations in the world (see Chapter 6); however, the 
quality of such data remains to be verified at most of these stations. Assuming that good-quality GHI 
data are available at a station of interest, how can the analyst derive the two other components—DNI 
and DHI—for example, to compute global irradiance on a tilted plane?  

There are two possible solutions to this frequent situation. The first is to temporarily ignore the 
existing GHI data and obtain time series of GHI, DNI, and DHI from a reputable source of satellite-
derived data. The modeled and measured GHI data can then be compared for quality assurance and 
possible bias corrections to the modeled data or, conversely, to determine the quality of the measured 
data. Both measured and modeled GHI values can incorporate systematic biases. Understanding the 
magnitude and nature of these biases and how they can affect the calculation is important when 
determining the uncertainty in the results (see Chapter 7).  
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The second method for determining DNI and DHI from GHI data consists of using one of 
numerous “separation” or “decomposition” models, about which considerable literature exists. 
Gueymard and Ruiz-Arias (2016) reviewed 140 such models and quantified their performance at 
54 high-quality radiometric stations over all continents using data with high temporal resolution 
(1 minute, in most cases). Previous evaluations had targeted a limited number of models, 
exclusively using the more conventional hourly resolution—e.g., Ineichen (2008); Jacovides et 
al. (2010); Perez et al. (1990); and Ruiz-Arias et al. (2010). All current models of this type being 
empirical in nature are not of “universal” validity and thus might not be optimized for the 
specific location under scrutiny, particularly under adverse situations (e.g., subhourly data, high 
surface albedo, or high aerosol loads) that can trigger significant biases and random errors; 
hence, the most appropriate way to deal with the component separation problem cannot be 
ascertained at any given location. The solar radiation scientific research community continues to 
validate the existing conversion algorithms and to develop new ones.  

In general, the higher the time resolution, the larger random errors in the estimated DNI or DHI 
will be. Even large biases could appear at subhourly resolutions if the models used are not 
appropriate for short-interval data. This issue is discussed by Gueymard and Ruiz-Arias (2014, 
2016), who showed that not all hourly models are appropriate for higher temporal resolutions 
and that large errors might occur under cloud-enhancement situations. A new avenue of research 
is to optimally combine the estimates from multiple models using advanced artificial intelligence 
techniques (Aler et al. 2017).  

2.7.5 Terrestrial Solar Spectra 
Many solar energy applications rely on collectors or systems that have a pronounced spectral 
response. The performance of solar cells that constitute the building blocks of PV systems are 
affected by the spectral distribution of incident radiation. Each solar cell technology has a 
specific spectral dependence (see Figure 3-22). To allow for the comparison and rating of solar 
cells or modules, it is thus necessary to rely on reference spectral conditions. To this end, various 
international standardization bodies—ASTM, the International Electrotechnical Commission 
(IEC), and ISO—have promulgated standards that describe such reference terrestrial spectra. In 
turn, these spectra are mandated to test the performance of any solar cell using either indoor or 
outdoor testing methods. Currently, all terrestrial standard reference spectra are for an air mass of 
1.5 (noted AM1.5). The reason for this as well as historical perspectives on the evolution of these 
standards are discussed by Gueymard et al. (2002). The standard reference spectra of relevance 
to the solar energy community are the following: 

• ASTM G173: for GTI on a 37° tilted surface and DNI 

• ASTM G197: for the direct, diffuse, and global components incident on surfaces tilted at 
20° and 90° 

• IEC 60904-3: similar to ASTM G173, with only slightly different values, lower by 0.29% 

• ISO 9845-1: replicating ASTM G159 (now deprecated and replaced by G173); ISO is 
currently preparing an update. 

In addition, CIE 241:2020 proposes a number of recommended reference solar spectra for 
industrial applications at various air masses, and ASTM G177 defines a “high-UV” spectrum at 
an air mass of 1.05 for material degradation purposes. 
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It is emphasized that these reference spectra correspond to clear-sky situations and are difficult to 
realize experimentally (Gueymard 2019). Spectroradiometers are now available that measure the 
spectral irradiance at high temporal resolution (e.g., each minute) under all possible sky 
conditions. Although the availability of spectral data are limited, they can be used to test systems 
under field conditions (see Chapter 3–Chapter 6). 
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Accurate measurements of the incoming irradiance are essential to solar power plant project 
design, implementation, and operations. Because solar irradiance measurements are relatively 
complex—and therefore expensive—compared to other meteorological measurements, they are 
available for only a limited number of locations. This is true especially for direct normal 
irradiance (DNI). Developers use irradiance data for: 

• Site resource analysis 
• System design 
• Plant operation. 

Irradiance measurements are also essential for: 
• Developing and testing models that use remote satellite sensing techniques or available 

surface meteorological observations to estimate solar radiation resources 
• Site adaptation of long-term resource data sets 
• Developing solar resource forecasting techniques and enhancing their quality by applying 

recent measurements for the creation of the forecast  
• Other disciplines not directly related to renewable energy, such as climate studies and 

accelerated weathering tests.  
This chapter focuses on the instrument selection, characterization, installation, design, and 
operation and maintenance (O&M)—including calibration of measurement systems suitable for 
collecting irradiance resource measurements—for renewable energy technology applications. 

3.1 Instrumentation  
Before considering instrumentation options and the associated costs, the user should first 
evaluate the data accuracy or uncertainty levels that will satisfy the ultimate analyses based on 
the radiometric measurements. This ensures that the best value can be achieved after considering 
the various available measurement and instrumentation options. 

By first establishing the project needs for solar resource data accuracy, the user can then base the 
instrument selection and the associated levels of effort necessary to operate and maintain the 
measurement system on an overall cost-performance determination. Specifically, the most 
accurate instrumentation should not be purchased if the project resources cannot support the 
maintenance required to ensure measurement quality that is consistent with the radiometer design 
specifications and the manufacturer’s recommendations. In such cases, alternative 
instrumentation designed for reduced maintenance requirements and reduced measurement 
performance—such as radiometers with photodiode-based detectors and diffuser disks or 
integrated measurement systems such as rotating shadowband irradiometers (RSIs)—could 
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produce more consistent results (see Section 3.2.5). As stated, however, in this context the first 
consideration is the accuracy required to support the final analysis. If budget limitations cannot 
sustain the necessary accuracy, a reevaluation of the project goals and resources must be 
undertaken. 

Redundant instrumentation is another important approach to ensure confidence in data quality. 
Multiple radiometers at the project site and/or providing for the measurement of the solar 
irradiance components—e.g., global horizontal irradiance (GHI), diffuse horizontal irradiance 
(DHI), DNI, and global tilted irradiance (GTI, also referred to as plane-of-array (POA) 
irradiance)—regardless of the primary measurement need, can greatly enhance opportunities for 
post-measurement data quality assessment, which is required to provide confidence in the 
resource data. 

Measuring other meteorological parameters relevant to the amounts and types of solar irradiance 
available at a specific time and location can also provide opportunities for post-measurement 
data quality assessment (see Section 3.3). 

3.2 Radiometer Types 
Instruments designed to measure any form of radiation are called radiometers. The earliest 
developments of instrumentation for measuring solar radiation were designed to meet the needs 
of agriculture for bright sunshine duration to understand evaporation and by physicists to 
determine the sun’s output or “solar constant.” During the 19th and 20th centuries, the most 
widely deployed instrument for measuring solar radiation was the Campbell-Stokes sunshine 
recorder (Iqbal 1983; Vignola, Michalsky, and Stoffel 2020). This analog device focuses the 
direct beam by a simple spherical lens (glass ball) to create burn marks during clear periods 
(when DNI exceeds ≈120 W/m2) on a sensitized paper strip placed daily in the sphere’s focus 
curve. By comparing the total burn length to the corresponding day length, records of percentage 
possible sunshine from stations around the world became the basis for characterizing the global 
distribution of solar radiation (Löf, Duffie, and Smith 1966). The earliest pyrheliometers (from 
the Greek words for fire, sun, and measure) were based on calorimetry and used by scientists to 
measure brief periods of DNI from various locations, generally at high elevations to minimize 
the effects of a thick atmosphere on the transmission of radiation from the sun. By the early 20th 
century, scientists had developed pyranometers (from the Greek words for fire and measure) to 
measure GHI to understand the Earth’s energy budget (Vignola, Michalsky, and Stoffel 2020). 

This section summarizes the types of commercially available radiometers most commonly used 
to measure solar radiation resources for solar energy technology applications. Solar resource 
assessments are traditionally based on broadband measurements—i.e., encompassing the whole 
shortwave spectrum (0.29–4 µm). More specialized instruments (spectroradiometers) are needed 
to evaluate the spectral distribution of this irradiance, which in turn is useful to investigate the 
spectral response of photovoltaic (PV) cells, for instance. Such instruments are described in 
Chapter 5, Section 5.6. 

3.2.1 Pyrheliometers and Pyranometers 
Pyrheliometers and pyranometers are two types of radiometers used to measure solar irradiance. 
Their ability to receive solar radiation from two distinct portions of the sky distinguishes their 
designs. As described in Chapter 2, pyrheliometers are used to measure DNI, and pyranometers 
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are used to measure GHI, DHI, GTI (aka POA), or the in-plane rear-side irradiance (RPOA). 
Another important measurement involving pyranometers is the albedo, which can be used to 
estimate RHI (reflected horizontal irradiance) in Eq. (2-2b) as well as RPOA. Albedo 
measurements are described in Chapter 5, Section 5.11. Table 3-1 summarizes some key 
attributes of these two radiometers. 

Table 3-1. Overview of Solar Radiometer Types and Their Applications 

Radiometer 
Type Measurement Field of View 

(Full Angle) Installation 

Pyrheliometer DNI 5°–6° Mounted on a solar tracker for 
alignment with the solar disk 

Pyranometer GHI 2π steradians Mounted on a stable horizontal 
surface free from local obstructionsa 

Pyranometer DHI 2π steradians Mounted on a solar tracker fitted with 
shading mechanism or on a 
manually adjusted shadowband 
platform to block DNI from the 
detector’s surfacea 

Pyranometer GTI (POA) 2π steradians Mounted in the plane of the flat-plate 
solar collector (fixed or tracked in 
one or two axes) 

Pyranometer RPOA 2π steradians Mounted in the plane of the rear side 
of the flat-plate solar collector 
oriented toward the ground (fixed or 
tracked in one or two axes) 

Pyranometers Albedo 2π steradians Two pyranometers mounted 
horizontally measuring the 
downward and upward irradiance, 
see Chapter 5, Section 5.11. 

a Optionally, thermopile pyranometers are installed with a powered ventilator and heating system to 
reduce contamination of optical surfaces and thermal errors. The base of thermopile pyranometers 
must be shielded from direct sunlight. 

Pyrheliometers and pyranometers commonly use either a thermoelectric or photoelectric passive 
sensor to convert solar irradiance (W/m2) into a proportional electrical signal (microvolts [µV] 
DC). Thermoelectric sensors have an optically black coating that allows for a broad and uniform 
spectral response to all solar radiation wavelengths from approximately 300–3000 nm (Figure 3-
1, left). The most common thermoelectric sensor used in radiometers is the thermopile. There are 
all-black thermopile sensors used in pyrheliometers and pyranometers as well as black-and-white 
thermopile pyranometers. In all-black thermopile sensors, the surface exposed to solar radiation 
is completely covered by the absorbing black coating. The absorbed radiation creates a 
temperature difference between the black side of the thermopile (i.e., “hot junction”) and the 
other side (i.e., “reference” or “cold junction”). The temperature difference causes a voltage 
signal. In black-and-white thermopiles, the surface exposed to radiation is partly black and partly 
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white. In this case, the temperature difference between the black and the white surfaces creates 
the voltage signal. Despite having a relatively small thermal mass, their 95% response times are 
not negligible, and they are typically 1–30 seconds6—that is, the output signal lags the changes 
in solar flux. Some instruments include a signal post-processing that tries to compensate for this 
time lag. Recently, new smaller thermopile sensors with response times as low as 0.2 second 
have been made commercially available as well. A detailed analysis of radiometer response 
times is found in Driesse (2018). 

In contrast to thermopiles, common photoelectric sensors generally respond to only the visible 
and near-infrared spectral regions from approximately 350–1,100 nm (Figure 3-1, right; Figure 
3-2). Pyranometers with photoelectric sensors are sometimes called silicon (Si) pyranometers or 
photodiode pyranometers. These sensors have very fast time-response characteristics—on the 
order of microseconds.  

For both thermopile and photelectric detectors used in commercially available instruments, the 
electrical signal generated by exposure to solar irradiance levels of approximately 1000 W/m2 is 
on the order of 10 mV DC (assuming no amplification of the output signal and an appropriate 
shunt resistor for photodiode sensors). This rather low-level signal requires proper electrical 
grounding and shielding considerations during installation (see Section 3.3.4). Most 
manufacturers now also offer pyrheliometers and pyranometers with built-in amplifiers and/or 
digital outputs. Such digital instruments can be of advantage for several reasons. Corrections for 
systematic errors depending on, e.g., the sensor temperature or the incident angle of the sun can 
be corrected directly in the instrument, which reduces the effort needed for data treatment and 
avoids user errors. Their implementation in a data acquisition system can be easier, and errors 
resulting from the transmission of low-voltage signals might be avoided. On the other hand, such 
digital sensors are sensitive to transients, surges, and ground potential rise, so the isolation and 
surge protection of power and communications lines is of high importance (Section 3.3.4). 

   
Figure 3-1. (Left) Thermopile assembly used in an Eppley Laboratory, Inc., model PSP and (right) a 

typical photodiode detector. Photos used with permission from LI-COR, Inc. 

 

 
6 The given response time represents the time it takes the instrument to reach 95% of the final value. Typically, a 
steplike change of the incoming irradiance is used to determine the response time. 
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Figure 3-2. Spectral response of LI-COR pyranometer LI200SA, Kipp & Zonen CM21 thermopile 

pyranometer, and CHP1 pyrheliometer plotted next to the GHI, DNI, DHI, and GTI spectra for ASTM 
G-173 conditions at AM1.5. Image by DLR 

3.2.1.1 Pyrheliometers 
Pyrheliometers are typically mounted on automatic solar trackers to maintain the instrument’s 
alignment with the solar disk and to fully illuminate the detector from sunrise to sunset (Figure 3-3 
and Figure 3-4). Alignment of the pyrheliometer with the solar disk is determined by a simple 
diopter—a sighting device in which a small spot of light (the solar image) falls on a mark in the 
center of a target located near the rear of the instrument, serving as a proxy for alignment of the 
solar beam to the detector. The tracking error is acceptable as long as the solar image is at least 
tangent to the diopter target. Modern sun trackers use software to compute and precisely track the 
sun position. These calculations require that the sun tracker is assembled and positioned correctly 
(horizontally levelled, correct azimuth orientation), and tracking errors occur if the tracker is not 
installed and positioned correctly. Tracking errors caused by imperfect levelling vary with the sun 
position. Sun sensors can help to reduce the remaining tracking errors during periods with no direct 
irradiance; hence, they are used in high-quality stations. The sun sensor is tracked to the sun and 
uses a four-quadrant sensor placed behind a pinhole or a lens to detect the tracking error. The 
tracking error is then sent to the tracker software so that it can be corrected. By convention—and to 
allow for small variations in tracker alignment—view-limiting apertures inside a pyrheliometer 
allow for the detection of radiation in a narrow annulus of sky around the sun (WMO 2018), called 
the circumsolar region. This circumsolar radiation component is the result of forward scattering of 
radiation near the solar disk, itself caused by cloud particles, atmospheric aerosols, and other 
constituents that can scatter solar radiation. All modern pyrheliometers should have a 5° field of 
view (FOV), following the World Meteorological Organization (WMO) (2018) recommendations. 
The FOV of older instruments could be larger, however, such as 5.7°–10° full angle. Depending on 
the FOV—or, to be more precise, the sensor’s penumbra function (see Chapter 2, Section 2.7.1, 
and references therein)—and tracker alignment, pyrheliometer measurements include varying 
amounts of circumsolar irradiance contributions to DNI. Although this is usually a very small 
contribution to the measurement, under atmospheric conditions of high scattering, it can be 
measurable, or even significant. 
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Figure 3-3. Schematic of a Kipp & Zonen B.V., model SHP1—a pyrheliometer with a smart 

interface. Image modified from Kipp & Zonen (2017) 

  
Figure 3-4. A pyrheliometer (1), a shaded pyranometer (2), and a shaded pyrgeometer (3) (See 

Section 3.2.4) mounted on an automatic solar tracker. Photo from DLR 

The most accurate measurements of DNI under stable conditions are accomplished using an 
electrically self-calibrating absolute cavity radiometer (ACR; see Figure 3-5). This advanced 
type of radiometer is the basis for the World Radiometric Reference (WRR), the internationally 
recognized detector-based measurement standard for DNI (Fröhlich 1991). The WMO World 
Standard Group of ACRs is shown in Figure 3-6. By design, ACRs have no windows and are 
therefore generally limited to fully attended operation during dry conditions to protect the 
integrity of the receiver cavity (Figure 3-7). Removable windows and temperature-controlled all-
weather designs are available for automated continuous operation of these radiometers; however, 

1 

2 3 
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the installation of a protective window nullifies the “absolute” nature of the DNI measurement. 
The window introduces additional measurement uncertainties associated with the optical 
transmittance properties of the window (made from either quartz or calcium fluoride) and the 
changes to the internal heat exchange resulting from the sealed system. Moreover, ACRs need 
some periods of self-calibration during which no exploitable measurement is possible. This 
creates discontinuities in the high-accuracy DNI time series that could be measured with 
windowed ACRs, unless a regular pyrheliometer is also present to provide the necessary 
redundancy (Gueymard and Ruiz-Arias 2015). Combined with their very high cost of ownership 
and operation, this explains why ACRs are rarely used to measure DNI in the field. 

A unique 10-month comparison of outdoor measurements from 33 pyrheliometers, including 
ACRs, under a wide range of weather conditions in Golden, Colorado, indicated that the 
estimated measurement uncertainties at a 95% confidence interval ranged from ±0.5% for 
windowed ACRs to +1.4%/–1.2% for commercially available instruments (Michalsky et al. 
2011). The results also suggested that the measurement performance during the comparison was 
better than indicated by the manufacturers’ specifications. 

 
Figure 3-5. Multiple electrically self-calibrating absolute cavity radiometers mounted on solar 

trackers with control and data acquisition electronics. Photo by NREL 
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Figure 3-6. The World Standard Group of six absolute cavity radiometers is used to define the 

WRR or DNI measurement standard. Photo by NREL 

 
Figure 3-7. Schematic of the Eppley Laboratory, Inc., model automatic Hickey-Frieden absolute 

cavity radiometer. Image modeled from Reda (1996) 

3.2.1.2 Pyranometers 
A pyranometer has a thermoelectric or photoelectric detector with a hemispherical FOV (360° or 
2π steradians) (see Figure 3-4 and Figure 3-8). This type of radiometer is mounted horizontally 
to measure GHI. In this horizontal mount, the pyranometer has a complete view of the sky dome. 



Chapter 3-9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Ideally, the mounting location for this instrument is free of natural or artificial obstructions on 
the horizon. Alternatively, the pyranometer can be mounted at a tilt to measure GTI, e.g., in the 
case of latitude-tilt or 1-axis tracking systems, or vertically for building applications. In an 
upside-down position, it measures the ground-reflected irradiance. The local albedo is simply 
obtained by dividing the latter by GHI as further discussed in Chapter 5, Section 5.11. 

The pyranometer detector is mounted under a protective dome (made of precision quartz or other 
high-transmittance optical material) and/or a diffuser. Both designs protect the detector from the 
weather and provide optical properties consistent with receiving hemispheric solar radiation. 
Pyranometers can be fitted with ventilators that constantly blow air—sometimes heated—from 
under the instrument and over the dome (Figure 3-9). The ventilation reduces the potential for 
contaminating the pyranometer optics caused by dust, dew, frost, snow, ice, insects, or other 
materials. Ventilation and heating also affect the thermal offset characteristics of pyranometers 
with single all-black detectors (Vignola, Long, and Reda 2009). The ventilation devices can 
require a significant amount of electrical power (5–20 W), particularly when heated, adding to 
the required capacity for on-site power generation in remote areas. Both DC and AC ventilators 
exist, but current research indicates that DC ventilators are preferable (Michalsky, Kutchenreiter, 
and Long 2019). 

 
Figure 3-8. Schematic of the Eppley Laboratory, Inc., PSP. Image by NREL 

Photodiode pyranometers provide the signal in the form of a photodiode’s short-circuit current. 
The fast response of such photodiode pyranometers makes them interesting for some 
applications, e.g., the measurement of cloud enhancement or ramping events. Photodiode 
pyranometers employ a diffuser above the detector (Figure 3-10) to achieve an approximate 
hemispherical response and to omit the glass dome to reduce cost. The application of a diffuser 
as an external surface compared to transparent glass domes makes such pyranometers 
measurably more dust tolerant than pyranometers with optical glass domes (Maxwell et al. 
1999). The long-term stability of photodiode pyranometers can vary differently from thermopile-
based pyranometers, as shown in Figure 3-11 and as further analyzed in Geuder et al. (2014). 
These instrument-specific behaviors dictate the need for regular calibrations as recommended by 
the manufacturers.  
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Figure 3-9. Kipp & Zonen model CM22 pyranometers installed in ventilated CV2 enclosures. 

Photo by NREL 

   
Figure 3-10. Selected photodiode sensors with different diffusor geometries. Photos by DLR 

Pyranometers can also be used to measure the diffuse irradiance. The required device for this 
measurement is known as a diffusometer. It consists of a pyranometer and a shading structure 
that blocks the direct radiation on its way to the sensor. Shading balls, shading disks, shading 
rings, or shadowbands are used for that purpose. Shading balls and shading disks must track the 
sun, and they cover only a small part of the sky corresponding to the angular region defined for 
measuring DNI (normally 5°). Shading rings and shadowbands cover the complete solar path 
during a day as seen from the pyranometer. They are built a little bit wider to cover the sun’s 
path on several consecutive days so that readjustments of the shading ring position are not 
required every day. The shading rings and shadowbands block a significant part of sky diffuse 
radiation; therefore, correction functions are necessary to determine DHI from the shading 
device. This explains why the accuracy of such a DHI determination is less than that of a DHI 
measurement with a shading disk or a shading ball. Shadowbands are further described in 
Section 3.2.5 in connection with the RSIs. 
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Figure 3-11. Example of long-term calibration responsivity changes for two photodiode-based 

pyranometers (A and B) with an acrylic diffuser and a thermopile-based pyranometer (C) based on 
results from periodic NREL Broadband Outdoor Radiometer Calibration events. 

3.2.2 Pyrheliometer and Pyranometer Classifications 
Both the International Organization for Standardization (ISO) and WMO have established 
instrument classifications and specifications for the measurement of solar irradiance. Radiometer 
classification can help to find the correct instrument and to interpret the data. Several instrument 
properties are used as the basis for these pyrheliometer and pyranometer classifications. The 
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latest ISO specifications for these radiometers are found in ISO 9060 (ISO 2018) and are 
summarized in Table 3-2 and Table 3-3 based on Apogee (2019). The standard provides not only 
acceptance intervals but also corresponding guard bands, which is advantageous because the 
measurements used to obtain the sensor specifications have nonnegligible uncertainties.  

The acceptance intervals provided by ISO 9060 give a general idea of the differences in data 
quality afforded by instrument classes; therefore, the radiometer classes can be understood as 
accuracy classes. The current standard also notes, however, that the acceptance intervals shown 
in the tables cannot be used for uncertainty calculations for measurements obtained at conditions 
that are different from those defined for the classification. For example, the temperature response 
limits are defined for the interval from -10°C to 40°C relative to the signal at 20°C. A 
measurement at 10°C will be connected to a different temperature response error than a 
measurement at 0°C or even -20°C. For the other parameters, the same principle applies. In 
particular, the spectral clear-sky irradiance error used for the classification can deviate from the 
spectral irradiance error for other conditions, e.g., cloudy conditions or other air masses. For 
pyranometers, it must also be considered that the spectral error for diffuse or tilted radiation is 
different from the spectral error for global horizontal radiation. A more detailed discussion of the 
clear-sky spectral error can be found in Wilbert et al. (2020). 

The most important changes in the current ISO 9060 compared to the previous version, from 
1990 (ISO 1990a), are as follows: 

• Simple names are used for the classes (AA, A, B, C), and a new class is introduced 
mainly for ACRs. 

• The clear-sky spectral error is used to classify the spectral properties of the radiometers, 
allowing photodiode-based radiometers to be also included in the ISO classification. 
Previously, the spectral selectivity was used, which excluded photodiode radiometers. 
The spectral selectivity is defined by ISO as the deviation of the spectral responsivity 
from the average spectral responsivity between 0.35–1.5 µm.  

• Additional radiometer classes are defined relatively to their response time and their 
spectral responsivity. If the 95% response time is less than 0.5 second, the radiometer can 
be called a “fast response radiometer.” Similarly, “spectrally flat radiometers” are defined 
using the spectral selectivity. If a radiometer has a spectral selectivity less than 3%, it can 
be called a spectrally flat radiometer. 

• For Class A pyranometers, individual testing of temperature response and directional 
response is required. 

• The final signal of a sensor can be used for classification after the application of specific 
correction functions (e.g., for temperature response) if these corrections are applied 
within the measurement system (processor within instrument or control unit). Processing 
errors are also used as a classification criterion.  

Including photodiode radiometers was considered helpful because only fast (µs) photodiode 
sensors can be used for accurate monitoring of extremely rapid fluctuations of solar irradiance. 
Under such circumstances—typically caused by cloud enhancement events—side-by-side 
thermopile and photodiode radiometers can disagree by a significant margin (Gueymard 2017a, 
2017b). Because the most accurate way to determine GHI involves the combination of DNI and 
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DHI measurements (ISO 2018; Michalsky et al. 1999), the shading balls, shading disks, shading 
masks, and rotating shadowbands used in RSIs are also defined in the current ISO 9060. 

The WMO characteristics of operational pyrheliometers and pyranometers are presented for 
three radiometer classifications: 

1. High quality: near state of the art, suitable for use as a working standard, maintainable 
only at stations with special facilities and staff 

2. Good quality: acceptable for network operations 
3. Moderate quality: suitable for low-cost networks where moderate to low performance is 

acceptable. 

Table 3-2. ISO 9060:2018 Specifications Summary for Pyrheliometers Used to Measure DNI 

Pyrheliometer Classification List 
Parameter Name of Class, Acceptance Interval 

Name of Class AA A B C 
Roughly Corresponding Class 

from ISO 9060:1990 
Not Defined Secondary 

Standard 
First Class Second Class 

Response time for 95% 
response 

No requirement <10 s <15 s <20 s 

Zero offset: 
a) Response to 5 K/h-
change in ambient 
temperature 
 
b) Complete zero offset 
including the effect a) and 
other sources 

 
±0.1 W/m2 

 

 
 

±0.2 W/m2 
 

 
±1 W/m2 

 

 
 

±2 W/m2 
 

 
±3 W/m2 

 

 
 

±4 W/m2 
 

 
±6 W/m2 

 

 
 

±7 W/m2 
 

Non-stability: Percentage 
change in responsivity per year 

±0.01% 
 

±0.5% 
 

±1% 
 

±2% 
 

Nonlinearity: Deviation from the 
responsivity at 500 W/m2 
because of change in irradiance 
from 100–1000 W/m2 

±0.01% 
 

±0.2% 
 

±0.5% 
 

±2% 
 

Clear-sky DNI spectral error ±0.01% 
 

±0.2% 
 

±1% 
 

±2% 
 

Temperature response: 
Percentage deviation because 
of change in ambient 
temperature within interval from 
-10°C–40°C relative to 20°C 

±0.01% 
 

±0.5% 
 

±1% 
 

±5% 
 

Tilt response: Percentage 
deviation from the responsivity 
from 0°–90° at 1000 W/m2 
irradiance 

±0.01% 
 

±0.2% 
 

±0.5% 
 

±2% 
 

Additional signal-processing 
errors ±0.1 W/m2 ±1 W/m2 ±5 W/m2 ±10 W/m2 
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Table 3-3. ISO 9060:2018(E) Specifications Summary for Pyranometers 

Pyranometer Classification List 

Specification Class of Pyranometera 
A B C 

Roughly Corresponding Class from 
ISO 9060:1990 

Secondary 
Standard 

First Class Second 
Class 

Response time: 95% response <10 s <20 s <30 s 

Zero offset: 
a) Response to –200 W/m2 net 
thermal radiation  
 
b) Response to 5 K h-1 change in 
ambient temperature 
 
c) Total zero offset including the 
effects a), b), and other sources 

 
±7 W/m2 

 

 

±2 W/m2 
 
 

±10 W/m2 
 

 
±15 W/m2 

 
 

±4 W/m2 
 
 

±21 W/m2 
 

 
±30 W/m2 

 

 

±8 W/m2 
 

 
±41 W/m2 

 

Non-stability: Change in responsivity 
per year 

±0.8% 
 

±1.5% 
 

±3% 
 

Nonlinearity: Percentage deviation from 
the responsivity at 500 W/m2 because 
of change in irradiance from 100–1000 
W/m2 

±0.5% 
 

±1% 
 

±3% 
 

Directional response for beam radiation 
(range of errors caused by assuming 
that the normal incidence responsivity 
is valid for all directions when 
measuring, from any direction, a beam 
radiation that has a normal incidence 
irradiance of 1000 W/m2) 

±10 W/m2 
 

±20 W/m2 
 

±30 W/m2 
 

Clear-sky GHI spectral error ±0.5% ±1% ±5% 
Temperature response: 
Deviation because of change in 
ambient temperature within the interval 
from -10ºC–40ºC relative to 20ºC 

±1% 
 

±2% 
 

±4% 
 

Tilt response: Percentage deviation 
from the responsivity at 0° tilt because 
of tilt change from 0–180° at 
1000 W/m2 irradiance 

±0.5% 
 

±2% 
 

±5% 
 

Additional signal-processing errors ±2 W/m2 
 

±5 W/m2 
 

±10 W/m2 
 

The WMO characteristics are similar to the classifications presented in the previous version of 
ISO 9060. The difference between the WMO and the outdated ISO 9060 classification is in the 
definition of spectral selectivity. The wavelength range used in the WMO definition is from 300–
3000 nm; whereas it was from 350–1500 nm in the 1990 version of ISO 9060. The WMO limits 
for the selectivity for the different classes were the same or even stricter as in the case of the 
highest pyranometer class. This led to the unfortunate situation that, apparently, no weather-
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proof pyrheliometer fulfills the requirements of the WMO classes even though the spectral errors 
of Class A field pyrheliometers are small. (Clear-sky spectral errors are approximately 0.1% 
[Wilbert et al. 2020]). Typical pyranometers of the highest class in ISO 9060 are also excluded 
from the WMO classification (Wilbert et al. 2020). This is true for both the 1990 and the 2018 
versions of the standard; therefore, it is currently not recommended to use the WMO 
classification but instead to work with the most recent version of ISO 9060. 

Even within each instrument class, there can be some measurement uncertainty variations. The 
user should research various instrument models to gain familiarity with the design and 
measurement performance characteristics in view of a particular application (Myers and Wilcox 
2009; Wilcox and Myers 2008; Gueymard and Myers 2009; Habte et al. 2014). Further, the 
accuracy of an irradiance measurement depends on the instrument itself as well as on its 
alignment, maintenance, data logger calibration, appropriate wiring, and other conditions and 
effects that degrade performance. The accuracy of radiometers is further discussed in Chapter 7. 

3.2.3 Pyrheliometer and Pyranometer Calibrations 
As stated, the signal of field radiometers is a voltage or a current that is ideally proportional to 
the solar irradiance reaching the detector. A calibration factor is required to convert the current 
or voltage to a solar irradiance. The calibration factor, Ccal, is the inverse of the responsivity, Rs. 
For example, the responsivity of a thermopile pyrheliometer is given in µV per W/m2. The 
irradiance, E, can be obtained from the voltage signal, Vpyr, or from the instrument’s responsivity 
as: 

 E = Vpyr/Rs = Vpyr ∙ Ccal (3-1) 

These calibration factors can vary over time, which requires periodic recalibrations, as 
demonstrated by the time-series plot of calibration responsivities of two pyrheliometers shown in 
Figure 3-12. The instability can be caused by changes in the instrument, the meteorological 
conditions at the time of calibration, the stability of the calibration reference radiometer(s), the 
performance of the data acquisition system, and other factors included in the estimated 
uncertainty of each calibration result.  

 

Figure 3-12. Calibration histories for two pyrheliometer control instruments spanning 23 years of 
Broadband Outdoor Radiometer Calibration events. Image by NREL 
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The calibration of pyrheliometers and pyranometers is described in detail in international 
standards ASTM G167-05, ASTM E816-05, ASTM E824-05, ASTM G183-05, ISO 9059, ISO 
9846, and ISO 9847. The calibration methods described in ISO 9846 (ISO 1993) for 
pyranometers and in ISO 9059 (ISO 1990b) for pyrheliometers are based on simultaneous solar 
irradiance measurements with test and reference instruments. ISO 9847 (ISO 1992) describes 
pyranometer calibrations using a reference pyranometer. These standards will be revised in the 
next years by the corresponding ISO working groups. 

Pyrheliometers are calibrated following ISO 9059 by comparing the voltage signal of the tracked 
test pyrheliometer to the reference DNI from one or a group of reference pyrheliometers. For 
each simultaneous measurement pair, a preliminary responsivity can be calculated as the ratio of 
the test instrument’s voltage to the reference DNI (Figure 3-13, right). After rejecting outliers 
and data collected during unstable conditions, an average responsivity can be determined. 
Because some pyrheliometers show a noticeable correlation with the solar zenith angle (SZA), 
specific angular responsivities can also be derived (Figure 3-13, left and bottom). For this 
calibration method, it is important that clouds do not mask the sun or the circumsolar region. The 
calibration can be affected if significant levels of circumsolar radiation prevail during the 
calibration. This risk increases with the instrument’s FOV; hence, Linke turbidities should be 
less than 6 according to the standard method. The Linke turbidity coefficient, TL, is a measure of 
atmospheric attenuation under cloudless conditions. It represents the number of clean and dry 
atmospheres that would result in the same attenuation as the real cloudless atmosphere. One 
method to derive the Linke turbidity from DNI is presented in Ineichen and Perez (2002). 

 
Figure 3-13. Pyrheliometer calibration results for an Eppley NIP summarizing (left) Rs compared to 

SZA and (right) Rs compared to local standard time. Image by NREL 

As mentioned, the WRR must be used as the traceable reference for the calibration of all 
terrestrial broadband radiometers, as stipulated by the internationally accepted Système 
International (SI). This internationally recognized measurement reference is a detector-based 
standard maintained by a group of electrically self-calibrating absolute cavity pyrheliometers at 
the World Radiation Center (WRC) by the Physical Meteorological Observatory in Davos, 
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Switzerland. The present accepted inherent uncertainty in the WRR is ±0.3% (Finsterle 2011). 
All radiometer calibrations must be traceable to the WRR, but that does not mean that all 
radiometers are calibrated directly against the WRR. The calibration chain from the WRR to a 
field instrument can have several steps. For example, reference ACRs are used as national and 
institutional standards, and these instruments are calibrated by comparison to the WRR during 
international pyrheliometer comparisons conducted by the WRC once every 5 years. 
Pyranometers calibrated against traceable WRR reference pyrheliometers make these 
pyranometer calibrations traceable to the WRR. 

Pyranometers can be calibrated outdoors with three different methods. One option, as described 
in ISO 9846, is to compare the DNI output from a reference pyrheliometer to that derived from 
the test pyranometer using the shade-unshade method. The successive voltages, Vunshade and 
Vshade, are proportional to GHI (unshaded) and DHI (shaded), respectively. Using the reference 
DNI and the relationship between GHI, DHI, and DNI, as described by Eq. (2-2a), the 
responsivity, Rs, of the pyranometer under test for one measurement sequence can be derived: 

 Rs = [(Vunshade – Vshade)/cos (SZA)]/DNI (3-2) 

This method is described in more detail by Reda, Stoffel, and Myers (2003).  

For this calibration method, virtually constant atmospheric conditions during the pair of shaded 
and unshaded measurements are required. Cloud cover must be very low, and the angular 
distance between clouds and the sun must be high. In addition to cloud cover, aerosol and water 
vapor variations could affect the calibration. This explains why only data collected for a low TL 
(less than 6) should be used for the calibration. 

Another option offered by ISO 9846 consists of comparing the voltage signal of the test 
pyranometer obtained in the GHI measurement position to the GHI calculated from the DNI and 
DHI measurements of a reference pyrheliometer and a shaded reference pyranometer. The Rs of 
a pyranometer under calibration for one simultaneous set of three measurements can be 
computed from their unshaded signal (Vunshaded): 

 Rs = Vunshaded/[DNI ∙ cos (SZA) + DHI] (3-3) 

Computing the Rs this way is called the “component-summation calibration technique.” Again, 
TL should be less than 6, and a high angular distance of clouds from the sun should exist during 
the whole calibration period. 

The third option to calibrate pyranometers outdoors is described in ISO 9847. It compares a test 
pyranometer to a reference pyranometer while both sensors are in the same measurement 
position (either GHI or GTI). The Rsi is then obtained as the ratio of the test signal to the 
reference irradiance. For outdoor pyranometer calibrations using a reference pyranometer (ISO 
1992), the sky conditions are less precisely defined than for the other methods described. The 
calibration interval is adjusted depending on the sky conditions. 

The indoor calibration methods from ISO 9847 use irradiance measurements under an artificial 
light source. For the first option, measurements are taken simultaneously after ensuring that the 
test and the reference pyranometer receive the same irradiance from an integrating sphere. This 
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is done by switching pyranometer positions during the calibration procedure. The other option is 
to take consecutive measurements by mounting the test and the reference instrument one after the 
other in the same position under a direct beam. The indoor calibrations are carried out in a 
controlled environment that is independent from external meteorological conditions. If 
measurements with the reference and test pyranometer are made after each other, however, 
instabilities of the artificial light source increase the calibration uncertainty compared to outdoor 
calibrations. If simultaneous measurements are used, an additional uncertainty contribution 
comes from the fact that the test and the reference pyranometer might not receive exactly the 
same irradiance from the artificial light source, though some of this error can be mitigated by 
switching the positions of the instruments during the calibration procedure. Further, the incident 
angle of the radiation is usually not well defined for indoor calibrations. Because of the 
pyranometer’s directional errors (see Table 3-3), this is another source of calibration uncertainty; 
therefore, in general, thorough outdoor calibrations with accurate reference instruments have 
lower uncertainties than indoor calibrations. 

The shade/unshade and component summation techniques, when conducted throughout a range 
of SZA, show that pyranometer responsivities are correlated with it. The variation of Rs as a 
function of SZA is like a fingerprint or signature of each individual pyranometer (Figure 3-14). 

 
Figure 3-14. Pyranometer calibration results for an Eppley PSP summarizing (left) Rs compared to 

SZA and (right) Rs compared to local standard time. Image by Daryl Myers, NREL 

This means that the angular responsivities of different specimens of the same model can differ. 
Variations of pyranometer Rs can be symmetrical with respect to solar noon, or they can be 
highly skewed, depending on the mechanical alignment of the pyranometer, detector surface 
structure, and detector absorber material properties. To improve the accuracy in the GHI 
measurement, using an SZA and azimuth angle-dependent calibration factor for each individual 
measurement are recommended. This method, however, is applicable only to conditions with 
high direct radiation contribution to the GHI because the variation of responsivity with SZA is 
mostly caused by direct radiation and the associated cosine error. For situations when thick 
clouds mask the sun or for DHI measurements, the angular distribution of the incoming 
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irradiance cannot be approximated well by one incidence angle. For DHI measurements, it is 
recommended to use the Rs for a 45° incidence angle. 

For accurate photodiode pyranometer calibration, further considerations beyond these standards 
are necessary because of the uneven spectral response. A specific calibration method is discussed 
in Section 3.2.5 for RSI instruments. 

3.2.4 Correction Functions for Systematic Errors of Radiometers 
Some pyrheliometer and pyranometer measurement errors are systematic and can be reduced by 
applying correction functions. An example is the correction of the directional errors, as 
mentioned. Some manufacturers provide one calibration constant for a pyranometer and 
additional correction factors for different intervals of SZA. This treatment of the incidence angle 
dependence has the same effect as using an incidence-angle-dependent responsivity. 

Moreover, an additional temperature correction can be applied if the internal temperature of 
pyranometers or pyrheliometers is measured using a temperature-dependent resistor close to the 
sensor. Correction coefficients are often supplied by the manufacturer. 

Measurements from only black (as opposed to black-and-white) thermoelectric pyranometers can 
be corrected for the expected thermal offset using additional measurements from pyrgeometers 
(Figure 3-4, right). Pyrgeometers allow for the determination of the downward longwave 
irradiance between approximately 4.5–40 µm, based on their sensor (thermopile) signal and body 
temperature. The thermopile is positioned below an opaque window that is transparent only to 
the specified infrared radiation wavelength range while excluding all visible, near- infrared, and 
far-infrared radiation. Most pyrgeometers must be positioned below a shading ball or disk to 
limit window heating by DNI. Ventilation units are also used for pyrgeometers, as in the case of 
pyranometers. If no pyrgeometer is available, a less accurate correction for the thermal offset can 
be made based on estimations of the thermal offset from the typically negative measurements 
collected during the night (Dutton et al. 2000; Gueymard and Myers 2009). 

Correction functions for photodiode pyranometers are presented in Section 3.2.5.2. 

3.2.5 Systems for Determining Solar Irradiance Components 
A measurement system that independently measures the basic solar components—GHI, DNI, 
and DHI—will produce data with the lowest uncertainty if the instruments are properly installed 
and maintained. Alternatives exist to reduce the overall cost of such a system while offering 
potentially acceptable data accuracies, depending on the application. These alternatives are 
designed to eliminate the expense and complexity of an automatic solar tracker with 
pyrheliometer and shaded pyranometer.  

3.2.5.1 Rotating Shadowband Irradiometers 
RSIs use a fast detector that is periodically shaded by a motorized shadowband, which rapidly 
sweeps back and forth across the detector’s FOV (Figure 3-15). The principle of operation of 
these RSIs is to measure GHI when unshaded and DHI when shaded. The DNI is calculated 
using the fundamental closure equation relating these three components, Eq. (2-2a): 

 DNI = (GHI – DHI) / cos (SZA) (3-4) 
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RSIs are often called rotating shadowband radiometers (RSRs) or rotating shadowband 
pyranometers (RSPs), depending on the instrument manufacturer. RSI refers to all such 
instruments measuring irradiance by use of a rotating shadowband. There are two types of RSIs: 
RSIs with continuous rotation and RSIs with discontinuous rotation. 

                           
 

                      
Figure 3-15. Four commercially available RSIs (clockwise from top left): Irradiance, Inc., model 
RSR2; Reichert GmbH RSP 4G; Yankee Environmental Systems, Inc., model SDR-1; and CSP-
Services GmbH Twin-RSI. Photos by (clockwise from top left) Irradiance, Inc.; CSP-Services; 

NREL; and CSP-Services 

The operational principle of RSIs with continuous rotation is shown in Figure 3-16. At the 
beginning of each rotation cycle, the shadowband is below the pyranometer in its rest position. 
The rotation is performed with constant angular velocity and takes approximately 1 second. 
During the rotation, the irradiance is measured with a high and constant sampling rate 
(approximately 1 kHz). This measurement is called a burst or sweep. At the beginning of the 
rotation, the pyranometer measures GHI. The moment the center of the shadow falls on the 
center of the sensor, it approximately detects DHI; however, the shadowband covers some 
portion of the sky, so the minimum of the burst is less than DHI. Thus, so-called shoulder values 
are determined by curve analysis algorithms. Such algorithms are usually implemented in the 
data logger program and use the maximum of the absolute value of the burst’s slope to find the 
position of the “shoulder values.” The difference between GHI and the average of the two 
shoulder values is added to the minimum of the curve to obtain the actual DHI. Subsequently, 
DNI is calculated by the data logger using GHI, DHI, and the SZA calculated by the known time 
and coordinates of the location, as stated. All the RSIs shown in Figure 3-15 (except for the 
SDR-1 model) work with a continuous rotation. 
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Figure 3-16. Burst (sweep) with sensor signal and the derived GHI, shoulder values, and DHI. 

Image from Wilbert (2014) 

RSIs with discontinuous rotation do not measure the complete burst but only four points of it. 
First, the GHI is measured while the shadowband is in the rest position. Then the shadowband 
rotates from the rest position toward the position just before it begins shading the diffuser, stops, 
and a measurement is taken (e.g., during 1 second for the SDR-1 shown in Figure 3-15). Then it 
continues the rotation toward the position at which the shadow lies centered on the diffuser, and 
another measurement is taken. The last point is measured in a position at which the shadow has 
just passed the diffuser. The measurement with the completely shaded diffuser is used 
equivalently to the minimum of the burst, as shown in Figure 3-16. The two measurements for 
which the shadow is close to the diffuser are used equivalently to the shoulder values to correct 
for the portion of the sky blocked by the shadowband. 

These two types of RSIs have advantages and disadvantages. An RSI with continuous rotation 
needs a detector with a fast response time (much less than 1 second—e.g., approximately 10 µs). 
Because thermopile sensors cannot be used, photodiodes are used instead—typically using Si. 
An example is the Si-based radiometer model LI-200SA shown in Figure 3-11. Because of the 
nonhomogeneous spectral response of such Si sensors (see Figure 3-2), the measurement 
accuracy of highest class thermopile pyranometers cannot be reached. Correction functions for 
this and other systematic errors must be applied to reach the accuracy required in resource 
assessments, albeit still not on par with the accuracy of thermopile instruments. These correction 
functions are discussed in Section 3.2.5.2.  

RSIs with discontinuous rotation need sufficiently long measurement times for each of the four 
points to allow the use of a thermopile detector (e.g., the Yankee TSR-1 thermopile shadowband 
radiometer, now discontinued); thus, the spectral error of a photodiode can be avoided—at least 
partly. So far, RSIs with discontinuous rotation typically rely on a diffuser, which has its own 
uneven spectral transmittance over the shortwave spectrum; hence, the spectral error of such 
RSIs cannot be neglected. Further, the discontinuous rotation is connected to other disadvantages 
compared to the continuous rotation. Although RSIs with continuous rotation are not affected by 
small azimuth alignment errors (within approximately ±5°), the azimuth alignment of RSIs with 
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discontinuous rotation is crucial for their accuracy. Moreover, the accuracy of the sensor’s 
coordinates and sweep time is more important for the discontinuous rotation. If the shadowband 
stops in the wrong position, the DHI measurement is incorrect. Further, the duration of the 
measurement with a discontinuous rotation increases the measurement uncertainty. This is 
especially relevant if the RSI uses a thermopile sensor and if sky conditions are not stable (e.g., 
cloud passages). If GHI and the sky radiance distribution change during the four-point 
measurement, the data used to determine DHI will be inconsistent. In contrast, this complication 
is less relevant for continuously rotating RSIs because their rotation takes approximately only 1 
second.  

DHI is typically determined one or four times per minute, but GHI measurements can be 
sampled at a higher frequency whenever the shadowband does not rotate—for example, every 
second. The temporal variation of GHI also contains some information about any concomitant 
change in DNI. Different algorithms are used to determine the averages of DHI and DNI 
between two DHI measurements using the more frequent GHI measurements. Temporal 
variation detected by the higher frequency GHI measurement can be used to trigger an additional 
sweep of the shadowband to update the DHI measurement under rapidly changing sky 
conditions. 

The initial lower accuracy of RSIs compared to ISO 9060 first-class pyrheliometers and 
secondary standard pyranometers is often compensated by some unique advantages of RSIs. 
Their simplicity/robustness, low soiling susceptibility (Pape et al. 2009; Geuder and Quaschning 
2006; Maxwell et al. 1999), low power demand, and comparatively lower cost (instrumentation 
and O&M) provide significant advantages compared to thermopile sensors and solar trackers, at 
least when operated under the measurement conditions of remote weather stations, where power 
and daily maintenance requirements are more difficult and costly to fulfill.  

With neither correction of the systematic deviations nor a matched calibration method, under the 
best field circumstances RSIs yield an uncertainty of only 5%–10%. This accuracy is notably 
improved, to approximately 2%–3%, with proper calibration and the application of advanced 
correction functions (Wilbert et al. 2016), which are described in the following sections. Most 
instrument providers also offer post-processing software or services that include these correction 
functions. Users should ask the manufacturer whether such post-processing is part of the 
instrument package and is readily available. 

Because of the stated disadvantages of RSIs with discontinuous rotation and the higher relevance 
of RSIs with continuous rotation for solar energy applications, the focus here is on RSIs with Si 
photodiodes and continuous rotation. More information about RSIs with discontinuous rotation 
can be found in Harrison, Michalsky, and Berndt (1994). Further general information on the 
accuracy of RSIs can be found in Chapter 7. 

3.2.5.2 Correction Functions for Rotating Shadowband Irradiometers 
The main systematic errors of RSIs with photodiode sensors are caused by the spectral response 
of the detector, its cosine response, and its temperature dependence. 

Several research groups have developed correction functions that reduce systematic errors in RSI 
readings. In all cases, the photodiode of the RSI is a LICOR LI-200SA. Whereas temperature 
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correction is similar in all versions (King and Myers 1997; Geuder, Pulvermüller, and Vorbrügg 
2008), the methods for the spectral and cosine corrections vary.  

Alados-Arboledas, Batlles, and Olmo (1995) used tabular factors for different sky clearness and 
skylight brightness parameters as well as a functional correction depending on SZA. King and 
Myers (1997) proposed functional corrections in dependence on air mass and SZA, primarily 
targeting GHI. This approach was further developed by Augustyn et al. (2002) and Vignola 
(2006), including diffuse and subsequently direct beam irradiance. The combination of the GHI 
correction of Augustyn et al. (2002) and of the diffuse correction from Vignola (2006) provides a 
complete set of corrections for LI-200SA-based RSIs. Independently, a method for DNI, GHI, 
and DHI correction was developed by the German Aerospace Agency, Deutsches Zentrum für 
Luft- und Raumfahrt (DLR), using functional corrections that include a particular spectral 
parameter obtained from GHI, DHI, and DNI (Geuder, Pulvermüller, and Vorbrügg 2008). 
Additional corrections in dependence on air mass and SZA were used. Another set of correction 
functions was later presented in Geuder et al. (2011). Additional new correction methods are on 
their way (Vignola et al. 2017; 2019; Forstinger et al 2020). An overview of RSI correction 
functions can be found in Jessen et al. (2017). 

3.2.5.3 Calibration Methods for Rotating Shadowband Irradiometers 
In addition to the corrections mentioned, special calibration techniques are required for RSIs. As 
of this writing, RSIs with continuous rotation are equipped with LI-200SA or LI-200R 
pyranometers. They come with precalibration values from the manufacturer (LI-COR) for GHI 
based on outdoor comparisons with an Eppley precision spectral pyranometer (PSP) with an 
accuracy stated as better than 5% (LI-COR Biosciences 2005). Considering that the PSP has only 
limited performance (Gueymard and Myers 2009), an additional calibration (e.g., on-site or with 
respect to DHI, DNI, or GHI independently) of the RSIs can noticeably improve their accuracy 
(Wilbert et al. 2016). 

Because of the rather narrow and inhomogeneous spectral response of the photodiodes and the 
combined measurement of DHI and GHI, only some aspects of the existing ISO standards for 
pyrheliometer and pyranometer calibrations can be transferred to RSI calibration. Calibrating 
RSI instruments involves independently field-calibrating them for DNI, DHI, and GHI. Each of 
these three steps is challenging because each irradiance component has a distinct spectral 
composition that can change during the day or from one location to another. Because of the 
spectral response of the Si detectors and/or the diffusers, it is problematic to calibrate an RSI 
based on only a few short series of measurements. This is possible for thermopile sensors 
because of their homogenous spectral response covering at least 300–3000 nm (which amounts 
to >99% of the ASTM G173 DNI spectrum). A similar calibration method of RSIs would need 
the spectra during the calibration and the additional—but incorrect—assumption that all RSIs 
from a single manufacturer have exactly the same nominal spectral and cosine response. Then 
the RSI measurements obtained later in a resource assessment station could be described by 
nominal correction functions and estimated or measured spectra. A similar approach using a 
calibration period of several weeks was tested in Forstinger et al. (2020), but it is still not applied 
for solar projects. Because of the possible variations between the spectral response of different 
pyranometers of the same model, using separate calibration constants for at least two of the three 
components (GHI, DHI, and DNI) is recommended; however, some RSI calibration methods 
include only GHI calibration. The current best practice is to consider a long enough calibration 
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period to include the wide variety of meteorological conditions that are expected at the site 
where the RSI is planned to be used. Such conditions should be assessed and characterized 
wisely during the calibration process. The calibration accuracy generally improves when the 
atmospheric conditions during the calibration closely represent those at the site where the RSI is 
intended to be operated later, though in reality such conditions will be highly variable. In 
addition to cloud cover, the effects of aerosols, water vapor, and site altitude on the solar 
spectrum must be considered (Myers 2011; Wilbert et al. 2016). Calibrations with artificial 
radiation sources that lack the spectral power distributions of natural solar radiation components 
usually also lack the variety of natural irradiation conditions; therefore, field calibrations under 
natural irradiation conditions should yield more accurate calibrations and are thus preferable. 

Outdoor RSI calibrations are performed at only a few laboratories, such as the National 
Renewable Energy Laboratory (NREL), in Golden, Colorado; and DLR at CIEMAT’s (Centro de 
Investigaciones Energéticas, Medioambientales y Tecnológicas) Plataforma Solar de Almería in 
Spain. Additionally, on-site calibrations are performed by a few specialized companies. At the 
Plataforma Solar de Almería, for instance, RSIs are operated parallel to ISO-9060 Class-A 
pyrheliometers and pyranometers under real-sky conditions (Figure 3-17). The duration of RSI 
calibrations is from several hours to more than 1 year. These longer calibration periods provide a 
database for the analysis of systematic signal deviations and measurement accuracy. An analysis 
of the dependence of the calibration constants on the duration of the calibration period, as well as 
more details on two possible calibration methods, are presented in Jessen et al. (2016) and 
Geuder, Affolter, and Kraas (2012). Data quality is analyzed and compared to the reference 
irradiances. RSI calibrations are performed according to the different methods described. All 
published calibration techniques are based on the comparison of corrected RSI signals (using the 
existing correction functions described) to reference irradiance measurements obtained with 
thermopile sensors. 

Depending on the calibration method, one, two, or even three calibration constants are defined. 
The motivation for determining one calibration constant is that only one pyranometer is used and 
the calibration based on GHI is less time-consuming than performing separate calibrations for 
GHI, DHI, and DNI. Because of the Si detector’s spectral response, the spectral sensitivities for 
DHI, GHI, and DNI are not the same; hence, the application of two or three calibration constants 
is physically reasonable, even though only one sensor is used.  

Examples of drift in the GHI calibration constants obtained from Geuder et al. (2008) were later 
investigated for nine sensors in Geuder et al. (2016) and Jessen et al. (2016). For recalibration 
periods from 2–3.75 years, changes in this GHI calibration constant were less than 1% in most 
cases. Recalibration is recommended at least every 2 years. An overview of current RSI 
calibration methods is presented in Jessen et al. (2016), and more details can be found in Geuder 
et al. (2008, 2016) and Kern (2010). A case study for the accuracy achievable by different 
combinations of correction functions and calibration methods is summarized in Chapter 7. 

The calibration techniques for RSIs can be partially used for other solid-state radiometers. 
Further details on RSIs and RSI-specific measurement best practices can be found in Wilbert et 
al. (2015). 



Chapter 3-25 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 3-17. RSI calibration station at CIEMAT’s Plataforma Solar de Almería. Photo by DLR 

3.2.5.4 Other Instruments Used to Derive Diffuse Horizontal Irradiance and Direct 
Normal Irradiance 

In addition to the radiometers described above, other instruments can be used to derive DHI or 
DNI from irradiance measurements. For example, the scanning pyrheliometer/pyranometer 
(Bergholter and Dehne 1994, 245ff) or the sunshine duration sensor Soni e3 (Lindner 1984) can 
be used to derive DNI; however, these two sensors reach only lower accuracies than tracked 
pyrheliometers, thermopile pyranometers with shading balls, or even RSIs, as documented in 
Geuder et al. (2006). Note that researchers have developed methods for estimating daily 
integrated values of DNI from the vast archive of measurements from Campbell-Stokes sunshine 
recorders (Stanhill 1998; Painter 1981). 

Another option for DNI measurements without tracking is the EKO MS-90 instrument (Figure 3-
18), which is based on an earlier sunshine recorder sensor (MS-093). The revised design uses a 
rotating mirror within a fixed glass tube tilted to latitude (–58° to +58°). The mirror reflects the 
direct beam onto a broadband pyroelectric detector that senses DNI four times per minute. 
Preliminary tests were conducted against a reference pyrheliometer (EKO MS-57) during the 
North American Pyrheliometer Comparison held at NREL in September 2016. The tests showed 
rather small deviations for a simple nontracking instrument when DNI exceeds 600 W/m2. 
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Figure 3-18. EKO MS-90. Image by NREL 

Recently, all-sky imagers have also been used to measure solar irradiance (Kurtz and Kleissl 
2017). The accuracy of such measurements alone is still too low for their application in resource 
assessment. All-sky imagers are so far mainly of interest for forecasting applications; hence, 
these instruments are further discussed in Chapter 8, Section 8.2.11. Another option for 
estimating DNI from measurements of both DHI and GHI by a single instrument is the SPN1 
(Figure 3-19). The SPN1 consists of an array of seven fast-response thermopile radiation 
detectors that are distributed in a hexagonal pattern under a glass dome. The detectors are 
positioned under diffuser disks and a special hemispherical shadow mask. The shape of the mask 
is selected such that for any position of the sun in the sky there is always one or more detectors 
that are fully shaded from the sun and exposed to approximately half the diffuse radiance (for 
completely overcast skies). Also, one or more detectors are exposed to the full solar beam for all 
positions. The minimum and the maximum readings of the seven detectors are used to derive 
GHI and DHI. 

 
Figure 3-19. Delta-T Devices, Ltd., SPN1. Image by NREL 

With this principle of operation, GHI, DHI, and DNI can be derived without any moving parts 
and without needing alignment other than horizontal leveling. Further, the SPN1’s low power 
demand (the temperature-controlled dome prevents dew and frost) increases its suitability for 
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operation in remote sites compared to DNI or DHI measurements involving solar trackers. Test 
results indicate that the accuracy of the SPN1’s GHI is comparable with RSIs, but its DNI and 
DHI readings have higher errors than the DNI measured with RSIs (Vuilleumier et al. 2012). 
Further, SPN1 performance results obtained at six different locations worldwide can be found in 
Badosa et al. (2014). An additional comparison with traditional radiometers is presented by 
Habte et al. (2016).  

3.2.6 Photovoltaic Reference Cells for Outdoor Use 
The photodiode detectors in the photoelectric pyranometers that are discussed are essentially tiny 
PV cells, usually only several square millimeters, and their operating principle is identical to the 
larger cells used in PV modules and PV power plants. The larger cells can also be used as 
radiometer elements, and when they are mounted in a suitable enclosure for measurement 
purposes, they are referred to as PV reference cells. Commercial products in this category are 
quite diverse, as shown in Figure 3-20. Their active cell area ranges from approximately 4–
225 cm2 (from left to right). 

             
Figure 3-20. A variety of commercial outdoor PV reference cells.  

Photos by PV Performance Labs 

Although they can be physically diverse, PV reference cells share four main characteristics: 

1. The output signal is proportional to the short-circuit current of the detector PV cell, and it 
is usually the voltage measured across an internal shunt resistor. The cell does not 
produce electrical power in this configuration, but the measured short-circuit current 
represents the amount of radiation that could be converted to electric power.  

2. The detector PV cells are protected by a flat, transparent window, which leads to 
reflections at the air-window interface and consequently lower irradiance readings for 
beam radiation coming at higher angles of incidence. This would be considered a very 
poor directional response by the definition of the pyranometer classes, but it allows the 
reference cell readings to more closely track the power output of a PV plant—especially 
when the window material matches the glass used in the plant’s PV modules. Figure 3-21 
shows the variations in the angular response from the four commercial reference cells. 

3. Like photodiode pyranometers, the spectral response of PV reference cells is narrow and 
nonuniform (Figure 3-22). This leads to a high spectral error according to the terms of the 
pyranometer classification, but, again, it allows the reference cells to track the PV plant 
output more closely. This works best when the technology of the reference cell—and 
hence its spectral response—matches that of the modules in the PV plant. In some 
reference cells, a filter glass is used to absorb some of the near-infrared light before it 
reaches the silicon detector (PV cell), thereby creating an overall spectral response that 
more closely matches another cell type, such as amorphous silicon or cadmium telluride. 
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Figure 3-21. Deviations of directional response for four commercial reference cells relative to ideal 

cosine response. Measurements and graphics courtesy of Anton Driesse, PV Performance Labs 

4. In practice, the output signal has a pronounced positive temperature dependency. This 
dependency is primarily a by-product of the spectral response and therefore varies by 
technology (it is approximately 400–500 ppm/K for crystalline silicon cells); however, it 
is not the same as the effect of temperature on PV module power output, which decreases 
with temperature. Reference cell products nearly always include a temperature sensor, 
and they could offer temperature-corrected or uncorrected irradiance signals as output. 

 
Figure 3-22. Spectral response functions for selected PV materials. Image courtesy of Chris 

Gueymard  

Note that this handbook focuses on PV reference cells designed for long-term continuous 
outdoor measurements. Products outside this category could differ substantially—for example, 
certain reference cells for indoor use only do not have a protective window. It is also possible to 
use a regular full-sized PV module as a radiometer by measuring its short-circuit current; 
however, this is also out of scope. 

It is clear from these descriptions that reference cells are fundamentally different from the other 
types of radiometers discussed in this handbook. These differences are not intrinsically good or 
bad, but rather they influence which type of radiometer is best suited for a given measurement 
objective. PV reference cells are not intended to measure broadband hemispherical irradiance; in 
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fact, some product designs would collect water when mounted horizontally, thus yielding large 
errors. If a low-cost substitute for a thermopile pyranometer is needed, a photodiode pyranometer 
is a usually better choice.  

3.2.6.1 Standardization of Photovoltaic Reference Cells 
Because of their measurement characteristics, reference cells are not consistent with ISO or 
WMO pyranometer classifications (ISO 2018; WMO 2018). Although many standards apply to 
PV reference cells directly or indirectly, there is no standard akin to ISO 9060 that would 
describe precisely and completely how reference cells should behave. In other words, there exists 
a definition of an ideal pyranometer but not of an ideal reference cell. Nevertheless, IEC 60904-
2:2015 – Part 2 (IEC 2015) provides many useful requirements (e.g., linearity better than 0.5% 
and acceptance angle >160°) and recommendations for reference devices ranging from single 
cells to whole modules. One of the most important aspects of this standard is the extensive 
documentation requirement, which states that calibration reports must include spectral 
responsivity, temperature coefficient, and many other details about the device itself as well as the 
calibration method and equipment used. Currently, most manufacturers of PV reference cells for 
outdoor use do not claim to apply this standard. 

There is also a de facto World Photovoltaic Scale (WPVS) reference cell standard. This was first 
established in 1997 by a group of laboratories seeking to establish a reference scale similar to the 
WRR (Osterwald et al. 1999). WPVS cells conform to IEC 60904-2 and fulfill several very 
specific additional design criteria (e.g., physical dimensions and connections) that improve long-
term stability and repeatability of measurements. Their high cost is more easily justified in a 
laboratory setting than for fieldwork; nevertheless, outdoor versions of WPVS cells are available. 

3.2.6.2 Calibration of Photovoltaic Reference Cells 
The responsivity of PV reference cells varies with wavelength, intensity and direction of the 
incident light, and the temperature of the cell. The calibration value is the response of the device 
(usually a value in millivolts) under a precisely defined spectral irradiance: the AM1.5 global 
spectrum (IEC 60904-3, IEC (2019a)) with irradiance 1000 W/m2; and with a device temperature 
of 25°C. Combined, these conditions are referred to as the standard test conditions (STC), which 
apply equally to PV module ratings. Reference cell response is normally linear with irradiance; 
therefore, the value of the response under STC is equal to the responsivity of the device in mV 
per 1000 W/m2 or µV/(W/m2). 

IEC 60904-4:2019 – Part 4 (IEC 2019b) describes four different methods to perform the 
calibration of primary reference devices with traceability to SI units, so the relationship of 
reference cells to broadband radiometers is well defined. All these methods consider the narrow 
spectral response of PV devices by calculating a spectral mismatch factor, which compensates 
for the fact that the light used during calibration does not normally correspond precisely to the 
AM1.5 global reference spectrum. 

IEC 60904-2:2019 – Part 2 describes how secondary or field reference cells can be subsequently 
calibrated by comparison to a primary reference device using either natural or simulated sunlight. 
When the spectral response of the primary reference cell is the same as that of the cell being 
calibrated, there is no spectral mismatch to be considered. 
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Primary reference cells are usually calibrated at precisely 25°C so that no temperature correction 
is required, and when identical devices are used for secondary or field calibrations, the effect of 
temperature cancels out. When there are differences in devices or device temperatures, however, 
a correction must be done as part of the calibration. Measurement procedures to determine the 
temperature coefficient are covered by IEC 60891 (IEC 2009); essentially, they consist of 
measuring the response over a range of temperatures and determining the slope of a linear fit.  

In all calibration situations, the direction of the incident light is predominantly normal to the 
plane of the cell, implying little or no diffuse irradiance. This minimizes the influence of the 
directional dependence, but in recent work this aspect has been analyzed more comprehensively, 
and the use of an angular mismatch factor has been proposed to further improve calibration 
consistency (Plag et al. 2018). 

In the context of calibrations, any adjustments for temperature, spectrum, or direction tend to be 
small compared to the effects of temperature, spectrum, and direction on field measurements. 

3.2.6.3 Deployment Considerations 
Because of the four distinct characteristics of PV reference cells, the natural place to deploy them 
would be in the context of PV projects. The benefit of the application of reference cells in solar 
resource assessment depends on the technology and the project phase. The benefits of reference 
cells for a resource assessment before the power plant construction are different from those for 
PV plant monitoring. The similarity of a PV reference cell to a specific PV technology can be of 
advantage if this PV technology is used, but other PV technologies will require a different 
reference cell, and solar thermal systems will require broadband measurements.  

For planning large power plants, satellite data sets are adapted to the site using ground 
measurements to achieve the required high accuracy (see also Chapter 4 and Chapter 9). 
Traditionally, the available irradiance data was broadband and collected using pyranometers, 
pyrheliometers, RSIs, or other devices, as described; hence, only broadband irradiance is 
provided by most satellite data sets, and broadband ground measurements are required for their 
validation and site adaptation. Only a few satellite-derived data sets include spectral data (Müller 
et al. 2012; Xie and Sengupta 2018), and such data are not available for the full globe.  

Another application of ground measurements collected before the plant construction is PV plant 
modeling. PV power plant models include effects such as reflectance losses and spectral 
mismatches to derive the power output from the broadband irradiance. Modeling these effects is 
related to additional errors, and the reference cells could offer an attractive alternative: If 
irradiance is measured under a flat glass cover, the reflectance losses do not need to be modeled; 
and if the irradiance measurement is already weighted by the spectral response of the reference 
cell, then no spectral correction model is required. In other words, if a PV reference cell is used, 
then the expected PV system output can be calculated with substantially fewer modeled steps, 
avoiding the uncertainty those would contribute; therefore, including a tilted reference cell in a 
ground measurement station is of interest before the plant construction. One drawback for the 
use of reference cells before actual plant construction is that the exact technology that will be 
used in the power plant might not be known at the beginning of the measurement campaign. 
Deviations among the temperature, incidence angle, and spectral effects of different PV products 
could be bigger than the uncertainty of the PV simulation models for these effects; hence, 
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different reference cells should be used if the PV technology has not been selected before a 
measurement campaign. Another important limiting factor for the application of reference cells 
for PV system modeling is the available software used for PV yield simulations. Most do not 
accommodate selectively bypassing certain model calculation steps, which would be required for 
adequate use of PV reference cell irradiance measurements. If such a limited software is used, it 
imposes to some extent the use of a broadband pyranometer. 

For PV monitoring, the advantages of PV reference cells are already much clearer, even without 
significant further research and development. The described accuracy enhancement is of great 
interest for PV monitoring and capacity testing. The limitation due to the PV system modeling 
tools also affects this application if a model using pyranometer-based GTI measurement is 
contracted for the monitoring; however, PV models used for PV monitoring or capacity testing 
more frequently allow the application of reference cell measurements as input than models used 
before the PV plant is built. Moreover, measurements with both pyranometers and reference cells 
are of interest. In the case of bifacial PV modules, spectrally matched reference cells are also an 
option to measure the required rear-side irradiance. To measure the rear-side irradiance, the 
reference cells are mounted on the module racking with an adequate support structure so that 
they are exposed as similarly as possible as the modules. End row effects are avoided and 
depending on the size of the PV plant and the variation of the ground and shading properties, 
several sensors must be used. 

To conclude, PV reference cells can be a helpful source of solar resource data, especially for PV 
monitoring, but currently they cannot replace broadband measurements in the context of general 
solar resource assessments. It is possible, however, that new, improved resource assessment 
methods will evolve that are specialized for PV applications and rely primarily on PV reference 
cells.  

General considerations for the instrument selection and the selection of the radiation components 
that should be measured are presented in Section 3.3.5. 

3.2.6.4 Recent and Ongoing Research 
The key to the effective use of PV reference cells is to understand their special characteristics 
and to apply that knowledge when collecting, interpreting, and using the data they produce. One 
active area of research is to quantify these characteristics for product categories, product models, 
and individual instruments (see Figure 3-23) (Driesse et al. 2015; Vignola et al. 2018). Directly 
related to this are studies attempting to apply this knowledge of characteristics to instrument 
calibration, uncertainty analysis, and modeling (Driesse and Stein 2017). 

Although complete knowledge of PV reference cell characteristics is desirable, it is not always 
practical to acquire and use it, even if it is available. Parallel and complementary efforts are 
underway to promote increased homogeneity and further standardization (Habte et al. 2018). 
Future editions of this handbook will expand on these and other topics related to PV reference 
cells. 
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Figure 3-23. Test facility to quantify PV reference cell characteristics and compare them with other 

types of radiometers. Photo by PV Performance Labs 

3.3 Measurement Station Design Considerations 
To collect useful solar resource data, the successful design and implementation of a solar 
resource measurement station or a network of stations requires careful consideration of the 
elements summarized in this section. The measurement stations also include additional 
meteorological instrumentation, such as anemometers, wind vanes, thermometers, and 
hygrometers. These measurements are described in Chapter 5. The general recommendations—
such as station security and data logging—described in this section also apply to these 
instruments.  

3.3.1 Location 
The primary purpose of setting up a solar resource measurement station before the construction 
of a solar power plant is to collect data that will ultimately allow an analyst to accurately 
characterize the solar irradiance and relevant meteorological parameters at that specific location. 
Ideally, the instruments would be within the targeted analysis area. In some cases, however, 
separation distances might be tolerated depending on the complexities of local climate and 
terrain variations. Less variability in terrain and climate generally translates to less variability in 
the solar resource over larger spatial scales. These effects should be well understood before 
determining the final location of a measurement station. (See Chapter 9 for more discussion of 
the effect of distance between the station and plant site.) The proximity to the target area must be 
weighed against operational factors, such as the availability of power, communications, and 
access for maintenance, as discussed in this chapter. Considerations should also include the 
possible effects of local sources of pollution or dust—for example, traffic on a nearby dirt road 
that could impact the measurements. 

Solar radiation measurements are also required for medium or large power plants (see Chapter 
9). Further, measurements can be helpful for other solar energy purposes, such as testing power 
plant components or for PV power forecasting for many small PV systems. In power plants and 
for component or system tests, the position of the station must be such that the measurements 
reflect the conditions of the power system as well as possible. In large power plants, this means 
that several distributed stations can be required. For PV systems, IEC 61724-1:2017 defines the 
number of required radiometers within the PV power plant depending on the system’s peak 
power.  

When measurement stations are constructed in metropolitan areas, industrial areas, or near 
electrical substations or solar power plants, consideration should be given to possible sources of 
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radio frequency signals and electromagnetic interference that could impart unwanted noise in 
sensors or cables. For example, the same high building that could provide an attractive 
unobstructed site for solar measurements could also be the ideal location for radio or television 
broadcast towers or some other apparatus. Such sites should be investigated for interference with 
the irradiance sensors and monitoring station. See Section 3.3.4 for additional information 
regarding proper shielding and grounding.  

Instrument placement is also an important consideration. If nearby objects—such as trees or 
buildings—shade the instruments for some period during the day, the resulting measurement will 
not truly represent the available solar resource in a nearby unshaded part of the site. Distant 
objects—especially mountains—could be legitimate obstructions because the shadows they cast 
are likely to produce an influence beyond the area local to the instruments. Conversely, nearby 
objects can potentially reflect solar radiation onto the instruments, resulting in measurements that 
do not represent the conditions for the power plant. Such cases could include a nearby wall, 
window, or other highly reflective object. The best practice is to locate instruments far from any 
objects that are in view of the instrument detector. The recommendations from WMO (2018) for 
radiation apply, if not mentioned otherwise. 

The easiest way to determine the quality of solar access is to scan the horizon for a full 360° of 
azimuth and note the elevation of any objects protruding into the sky above the local horizon. 
Look for buildings, trees, antennae, power poles, and even power lines. Most locations will have 
some obstructions, but whether they will be significant in the context of the necessary 
measurements must be determined. Camera-based devices can be used to assess any obstructions 
including far shading from mountains, trees, etc., and the assessment can be easily documented 
and quantified, such as seasonal shade effects. Generally, pyranometers are insensitive to sky 
blockage within approximately 5° elevation above the horizon. Pyrheliometers, however, are 
more sensitive because objects can completely block DNI, depending on the daily path of the sun 
throughout the year. The duration and amount of daily blockage are related to the object’s width 
and height above the horizon. On an annual basis, the number of blockage days depends on 
where along the horizon the object lies. To be a concern, the object must be in the area of the sun 
near sunrise or sunset, the time and azimuth of which vary throughout the year. For most of the 
horizon, objects blocking the sky will not be a factor because the sun rises in a limited angular 
range in the east and sets likewise in the west during sunset (e.g., at 40° N latitude, sunrise 
occurs approximately 60° from true north at the summer solstice and 120° from true north at the 
winter solstice). The farther north in latitude the site is located, however, the greater the angular 
range of these sunrise and sunset areas of interest. A solar horizon map, or even a sketch of 
obstructions by elevation and azimuth, will help determine the areas where horizon objects will 
affect the measurement (see Figure 2-5). Such maps can be created with digital cameras and 
software. Several commercial products using curved mirrors and also apps for smartphones exist. 

Considerations for locating a station should also include environmental factors, such as wildlife 
habitat, migratory paths, drainage, and antiquities or archeological areas. 

3.3.2 Station Security and Accessibility 
Measurement stations can cost tens of thousands or even hundreds of thousands of dollars. 
Although this equipment is typically not the target of thieves seeking property for resale, it is still 
subject to theft and should be protected. Vandalism might be even more likely than theft. The 
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less visible and accessible the station is to the public, the less likely it will be the target of theft 
or vandalism. For example, instruments mounted on a rooftop are less likely to attract unwanted 
attention than those unprotected beside a highway. Lack of visibility is the best defense against 
vandalism. 

Security fences should be used if people or animals are likely to intrude. Within a fenced solar 
power plant, no additional fences are required. Fencing should be at least 1.8-m tall, preferably 
with barbed wire and fitted with locking gates in high-profile areas where intrusion attempts are 
likely. Less elaborate fences might suffice in areas that are generally secure and where only the 
curious need to be discouraged from meddling with the equipment. In remote venues with few 
human hazards, cattle fence paneling (approximately 1.2-m tall) might be advisable if large 
animals roam the area. The fencing should be sturdy enough to withstand the weight of a large 
animal that might rub against the compound or otherwise be pushed or fall against the fence. It 
might not be possible to keep smaller animals out of the station compound, and precautions 
should be taken to ensure that the equipment, cabling, and supports can withstand encounters 
with these animals. Rodents, birds, and other wildlife could move through the wires or jump over 
or burrow under fences. Signal cabling between modules or sensors at or near ground level is 
prone to gnawing by rodents and should be run through a protective conduit or buried. Any 
buried cable should be either specified for use underground or run through conduit approved for 
underground use. Underground utilities and other objects should be investigated before postholes 
are dug or anchors are sunk. 

If fences are used, they must be considered a potential obstacle that could shade the instruments 
or reflect radiation to the instruments. The radiometers should be positioned at least above the 
line between the horizon and the fence (including barbed wire), if only by a few millimeters, to 
prevent any shading of the sensor. This assumes that the pyranometer is mounted in a horizontal 
position and that the pyrheliometer is installed on a solar tracker. Tilted pyranometers should 
have an unobstructed view of the ground and sky in front of them. For albedo measurements, 
fences cause measurement errors if the area under the downward-facing pyranometer is shaded 
(see also Chapter 5, Section 5.11). This must be considered for the station design. The 
recommendations from WMO (2018) concerning obstacles should be followed. Deviations 
between WMO (2018) and the actual station design are acceptable if these deviations affect not 
only the measurement station but also the solar energy system that is analyzed using the 
measurements. If nearby towers are unavoidable, the station should be positioned between the 
tower and the equator (e.g., to the south of the tower in the northern hemisphere) to minimize 
shading. The radiometers should be positioned as far as possible from the tower—at least several 
meters—so the tower blocks as little of the sky as possible. Nevertheless, radiometer signal 
cables should be shorter than 50 m to avoid losses caused by line resistance. The tower should 
also be painted a neutral gray to minimize strong reflections that could contaminate the solar 
measurement. These guidelines assume that the tower is part of the measurement station proper 
and that the site operator has control of the placement or modification of the tower. Without that 
control, the radiometers should be placed as far as possible from the tower. 

Access to the equipment must also be part of a station’s construction plan. Because routine 
maintenance is a primary factor affecting data quality, provisions must be made for reasonable 
and easy access to the instruments. Factors here could include ease of access to cross-locked 
property, well-maintained all-weather roads, and roof access that could be controlled by other 
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departments. Safety must also be a consideration. Locations that present hazardous conditions—
such as rooftops without railings or that require access using unanchored ladders—must be 
avoided. 

3.3.3 Power Requirements 
Ongoing measurements require a reliable source of electrical power to minimize system 
downtime from power outages. In some areas, power from the utility grid is reliable, and 
downtime is measured in minutes per year. In other areas, multiple daily power interruptions are 
routine. Depending on the tolerance of the required analysis to missing data, precautions should 
be taken to ensure that gaps in the data stream from power outages do not seriously affect the 
results. The most common and cost-effective bridge for power outages is an uninterruptible 
power supply (UPS). The UPS can also filter out unwanted or harmful line voltage fluctuations 
that can occur for a variety of reasons. It has internal storage batteries that are used as a source of 
power in case of an AC power interruption. When the AC power is interrupted, internal circuitry 
makes an almost seamless switch from grid-connected AC power to AC provided through an 
inverter connected to the battery bank. When power is restored, the UPS recharges the internal 
battery from the AC line power. Power loss is detected quickly, as is switching to the battery, 
and it is measured in milliseconds or partial line cycles. Some equipment could be particularly 
susceptible to even millisecond power interruptions during switching and should be identified 
through trial and error to avert unexpected downtime despite use of the UPS. 

The UPS is sized according to: 

• Operating power: How much can it continuously supply either on or off grid-connected 
AC power? 

• Operating capacity: How long can the UPS supply power if the grid connection is 
interrupted? 

Users should estimate the longest occurring power outage and size the UPS for the maximum 
load of attached devices and the maximum period of battery capacity. Batteries should be tested 
regularly to ensure that the device can still operate per design specifications. This is most 
important in hot areas (such as deserts) because batteries could overheat and become inoperative 
(temporarily or permanently). Internal battery test functions sometimes report errors only when 
batteries are near complete failure and not when performance has degraded. A timed full-power-
off test should be conducted periodically to ensure that the UPS will provide backup power for 
the time needed to prevent measurement system failure. 

In remote locations where utility power is not available, local power generation with battery 
storage should be devised. Options for on-site electrical power generation include PV or small 
wind turbine systems (or both) and gasoline- or diesel-fueled generators. The renewable energy 
systems should be sized to provide enough energy for the maximum continuous load and power 
through several days of adverse conditions (cloudy weather and/or low wind speeds). This 
includes sites prone to persistent surface fog. The sizing is a function of the extremes of the solar 
climate and should consider the longest gap during reduced generation, the shortest recharge 
period available after discharge, and the generation capacity and storage necessary to provide 
uninterrupted power for the target location. Some oversizing is necessary to accommodate 
degradation of PV panels and battery storage, and consideration should be given to ambient 
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temperature, which affects the ability of a battery to deliver energy. Sizing calculators are 
available to help with this effort.7 

Equipment should be specified and tested for self-power-on capability in the event of a power 
outage. This ensures that when power is restored, the equipment will automatically resume 
measurements and logging without operator intervention. This is an important consideration for 
remote locations where considerable downtime might occur before personnel can be dispatched 
to restart a system. 

3.3.4 Grounding and Shielding 
Station equipment should be protected against lightning strikes and shielded from radio 
frequency interference that could damage equipment or reduce the validity of the measurements. 
Several references are available that describe techniques for grounding and shielding low-voltage 
signal cables (see, e.g., Morrison 1998). Those designing solar resource measurement systems 
are urged to consult these references and seek expert technical advice. If digital sensors with 
onboard analog-to-digital converters are used, their sensitivity to transients, surges, and ground 
potential rise must be considered; therefore, the power and communications lines should be 
isolated and surge protected with physical isolation, surge protection devices, or other equivalent 
technology. 

In general, the following steps should be taken when designing and constructing a measurement 
station: 

1. Use a single-point ground (e.g., a copper rod driven several feet into the ground) for all 
signal ground connections to prevent ground loops that can introduce noise or biases in 
the measurements. 

2. Use twisted pair, shielded cables for low-voltage measurements connected as double- 
ended measurements at the data logger. Double-ended measurements require separate 
logger channels for + and – signal input conductors. These inputs are compared to each 
other; therefore, the possibilities for electrical noise introduced in the signal cable are 
significantly reduced. 

3. Physically isolate low-voltage sensor cables from nearby sources of electrical noise, such 
as power cables. Do not run signal cables in the same bundle or conduit as AC power 
cables. If a power cable must cross a signal cable, always position the two at right angles 
to each other. This case is not recommended, but this limited contact will minimize the 
possibility of induced voltages in the signal cable. Also, the data logger settings should be 
selected to avoid signal noise (the integration time of the voltage measurement adjusted 
to AC frequency). 

4. Connect metal structures such as masts and tripods to the ground to provide an easy path 
to the ground in the event of a lightning strike. This will help protect sensitive 
instruments. Electronic equipment often has a special ground lug and associated internal 
protection to help protect against stray voltages from lighting strikes. These should be 
connected with a heavy gauge wire to ground (12 American wire gauge or larger). Metal 
oxide varistors, avalanche diodes, or gas tubes can be used to protect signal cables from 

 
7 See http://pvwatts.nrel.gov/.  

http://pvwatts.nrel.gov/
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electrical surges such as lightning. These devices must be replaced periodically to 
maintain effectiveness. The replacement frequency is a function of the accumulated 
energy dissipated by the unit. The U.S. National Electric Code recommends a ground 
resistance of less than 5 Ohms for “sensitive” electronic equipment. If that cannot be met 
with one rod, multiple rods should be used and bonded together. Ground resistance 
should be measured with a ground resistance tester using the three-pin or four-pin 
method.  

3.3.5 Measurement and Instrument Selection 
From among the descriptions, the station designers should choose the instrumentation and the 
radiation components that will best support the data and uncertainty goals of the project. As 
discussed, station designers must consider not only the accuracy under optimum maintenance 
conditions but also the expected accuracy for the likely maintenance conditions. Depending on 
the project phase, different instruments could be used.  

Before constructing large power plants, radiation measurements are used mainly to enhance the 
accuracy of satellite-derived long-term data sets with different site adaptation methods (see 
Chapter 4, Section 4.8). For concentrating technologies, only the DNI resource is ultimately of 
interest, and hence in principle only a pyrheliometer would be needed. This minimalist setup is 
not recommended, however, because the best data quality control methods rely on the 
independent measurement of the three radiation components (see Section 3.4.2). For fixed non-
concentrating techniques, such as most PV plants, measuring GHI would be the minimal option 
because long-term GHI data can be site-adapted with the GHI measurement and then converted 
to POA with decomposition and transposition models. Measuring only GTI on a tilt 
corresponding to the anticipated POA is not advisable because long-term data sets typically do 
not provide GTI and because site adaptation methods have only been developed for DNI, GHI, 
and DHI. Although such minimalistic measurement setups with only one instrument might seem 
sufficient at first, it is advantageous and hence common to measure further radiation components 
or to include redundant sensors for the same component. There are several reasons for this. 
Measuring multiple radiation components in one station increases the accuracy of yield 
predictions, improves the detection of measurement errors, and gives more flexibility regarding 
the selection of the power plant technology.  

The accuracy of PV yield calculations can be increased by measuring not only GHI but also DNI 
or DHI. Transposition models used to derive GTI from GHI and DNI are much more accurate 
than decomposition and transposition models that derive GTI from GHI alone (see Chapter 2, 
Section 2.7.4). With only the DNI or DHI measurement available at a site, the DNI satellite data 
can be enhanced with the ground measurements. For more detailed PV system simulations, 
ground measurements are helpful as direct input. With GHI and DNI data, the PV simulations 
are more accurate because one can consider that mainly the direct component is affected by 
incidence angle and shading.  

Additional GTI measurements are advantageous for resource assessment because they can be 
used to select the best transposition (or decomposition and transposition) model for the site. One 
must consider that the best transposition (and decomposition) model for open field 
measurements, however, might not be the best option once the plant is built because the modules 
affect the incoming radiance distribution. GTI measurements are more accurate than modeled 
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GTI and can be used as direct input for detailed PV modeling. One complication for GTI 
measurements is selecting the right orientation and tilt of the POA pyranometer before starting 
the measurement campaign. The optimal orientation depends on the latitude, the meteorological 
conditions at the site, the shading effects, and the electricity market, among others. Tracked POA 
measurements might also be of interest, and deploying reference cells should also be considered 
(Section 3.2.6.3). Reference cells can be valuable for such additional measurements. 

A further advantage of radiometers is related to the quality control of the data and to the 
detection of errors. If global, direct, and diffuse irradiance are known, it is possible—though not 
advisable—to measure two of the three because the third parameter can be calculated from the 
other two. The most accurate installations include all three components. This provides not only 
redundancy in case of instrument failure but also—and more importantly—the basis for the most 
rigorous data quality protocols, as described in Section 3.4.2. Also, redundant measurements of 
the same radiation component can be of interest to avoid data gaps and increase accuracy.  

Measuring the three radiation components with a solar tracker, a pyrheliometer, a pyranometer, 
and a shaded pyranometer induces a significant maintenance effort. Without trained personnel 
providing daily cleaning and prompt corrections in case of tracker or alignment errors, data gaps 
and increased uncertainties are common. Measurements of DNI or DHI, however, in addition to 
that of GHI, are recommended for both tracked and fixed utility-scale PV projects and of course 
also for concentrating collectors; therefore, simple, more robust instruments, such as RSIs 
(section 3.2.5), at times in combination with a thermopile pyranometer, can be a better option to 
determine the three radiation components. In this case, only a less effective quality control, as in 
the case of measurements with two radiometers (e.g., GHI and DNI), is possible because of the 
principle of operation of these radiometers.  

The third main advantage of measuring several radiation components is the increase in flexibility 
for the selection of the solar technology. The exact technology option or mix might not be 
selected at the start of the measurement campaign. Depending on the site conditions, tracked PV 
could be an advantage over fixed PV. If tracked PV is used, DNI measurements are more 
important than they are for fixed PV systems. A concentrating solar power (CSP) project could 
be less adequate than PV for a specific site—for example, because of higher than expected 
aerosol load, which reduces DNI much more than GTI. If PV is selected instead of CSP, GTI 
must be measured or modeled.  

Additional radiometers add to the instrumentation budget, but when considering the overall costs 
of acquiring the property, building the infrastructure, providing long-term labor for O&M, and 
underwriting the resources required for processing and archiving, the added cost is nominal, and 
its inclusion will likely pay off with a valuable dimension of credibility for the project and the 
associated reduced financing costs. 

To operate solar power plants, different measurements are required. For PV, the International 
Electrotechnical Commission (IEC) standard 61724-1 (IEC 2017) defines the parameters to be 
measured for PV monitoring. GTI and GHI measurements are required for the highest accuracy 
level defined in the standard. Depending on the peak power of the PV system, different numbers 
of sensors of the same type are required. The IEC standard also defines the instrument types 
allowed in the classes. PV monitoring Class A systems use the highest ISO 9060 class 
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pyranometers or reference cells with low uncertainty. For PV monitoring Class B systems, less 
accurate pyranometers and reference cells are allowed. Class B can be of interest for small- or 
medium-size power plants. For bifacial PV systems, rear-side irradiance and/or albedo (see 
section 5.11 (Chapter 5)) must also be measured, according to a revision of the standard that is 
currently under preparation. For CSP, no standard is available that defines the instrumentation 
that should be used at the power plant; however, virtually all CSP plants use ISO 9060 Class-A 
pyrheliometers to measure DNI. GHI and DHI are not specifically mentioned, but this is a 
disadvantage because of the reduced ability to quality-control the radiation measurements. At 
present, there is no consensus on the required number of DNI measurements per CSP plant. In 
some instances, only one pyrheliometer is used; whereas in other plants, four or more DNI 
measurements are taken.  

Apart from the radiation measurements, other meteorological parameters are required for 
resource assessment and during the operation of a solar power plant. These parameters and the 
corresponding instruments are discussed in Chapter 5. 

3.3.6 Data Loggers 
Most radiometers output a voltage, current, or resistance that is measured by the data logger, 
which comprises a voltmeter, ammeter, and/or ohmmeter. The measured output value is 
subsequently converted to the units of the measurand through a multiplier and/or an offset 
determined by calibration to a recognized measurement standard.  

Data loggers should be chosen to have a very small measurement uncertainty, perhaps 3–10 
times smaller than the estimated measurement uncertainty associated with the radiometer. This is 
the accuracy ratio between the data logger and the radiometer. For example, typical 
specifications for a good data logger measuring a 10-mV output from the radiometer accurate to 
1%, or 0.1 mV (100 µV), are on the order of total uncertainty (accuracy) of better than (less than) 
0.1% of reading (or full scale) for the parameter in question, which would be 0.010 mV, or 
10 µV. 

The logger should also have a measurement range that can cover the signal at near full scale to 
best capture the resolution of the data. For example, a sensor with a full-scale output of 10 mV 
should be connected to a logger with a range that is at least 10 mV. A logger with a 1-V range 
might be able to measure 10 mV but not with the desired accuracy and resolution. Most modern 
data loggers have several range selections, allowing the user to optimize the match for each 
instrument. Because of the nature of solar radiation, radiometers (e.g., pyranometers used for 
GHI measurements) can sometimes produce 200% or more of clear-sky readings under certain 
passing cloud enhancement conditions, and the logger range should be set to prevent over-
ranging during these sky conditions. The absolute GHI limit that can be reached during cloud-
enhancement situations is a decreasing function of the measurement time step, but this can be 
misleading. At a 1-minute resolution, a safe limit seems to be 1800 W/m2, but it could reach 
2000 W/m2 or more at a 1-second resolution with photodiode radiometers. Because the data 
logger measures near-instantaneous values regardless of its averaging or recording time step, the 
range should be set to accommodate the higher values described. See Gueymard (2017a, 2017b) 
for more details. 
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Some radiometers use amplifiers to increase the instrument output to a higher range to better 
satisfy signal range matching requirements; however, such amplifiers will add system 
complexity and some uncertainty to the data with nonlinearity, noise, temperature dependence, 
or instability. High-quality amplifiers could minimize these effects and allow a reasonable trade-
off between logger cost and data accuracy. Calibrations should be made of these radiometer 
systems by coupling the pyranometer or pyrheliometer with its uniquely associated amplifier. 

The logging equipment should also have environmental specifications that are compatible with 
the environment where the equipment will be used. Loggers used inside an environmentally 
controlled building could have less stringent environmental performance specifications than one 
mounted outside in a desert or arctic environment. Equipment enclosures can create an internal 
environment several degrees above ambient air temperature because of solar heating (absorption 
by the enclosure materials), heat generated by electronic devices mounted inside, and the lack of 
sufficient ventilation to help purge heat. 

The sampling rate and recording rates of the solar resource data should be determined from the 
desired data analysis requirements. The sampling rate refers to how often the logger measures in 
a time interval. The recording rate is often also called the reporting rate or the time resolution. It 
is the length of the time interval that is represented by one data point in the logger’s output file. 
Monthly averages or sums, daily, hourly, minute, or sub-1-minute data records can be of interest. 
Data loggers can generally be configured to produce output of instantaneous or integrated values 
at any reasonable time period consistent with the radiometer time-response characteristics. The 
design should consider the current requirements and, if convenient and practical, future needs for 
additional analyses. A high-temporal-resolution data-logging scheme can be down-sampled or 
integrated into longer time periods—but not the other way around. Data logging equipment, data 
transfer mechanisms, and data storage can generally handle 1-minute data resolution, and this 
should be considered the recording rate in the data logger. A resolution of 1 minute or better is 
recommended to allow for accurate data quality control. Because most applications address the 
solar energy available over time, integrating data of sub-minute samples within the data logger is 
a common method of data output regardless of the final data resolution required by the analysis. 
For instance, 1-second signal sampling is recommended for irradiance measurements in the 
Baseline Surface Radiation Network (BSRN) (McArthur 2005) so that 60 samples are averaged 
to the reported 1-minute data. The output of the instantaneous samples at longer intervals is 
much less likely to represent the available energy and should be avoided when configuring a data 
logger. If the size of a measured data set is a defining issue (e.g., limited data communications 
throughput), the user can determine the lowest temporal resolution necessary for the application 
and optimize the data collection accordingly. 

3.3.7 Data Communications 
Provisions should be made for automatically and frequently transferring data from the data 
logger to a data processing facility. This is the basis for adequately frequent data checks and 
timely corrections of outages and errors. Such frequent connections also allow for automatic data 
logger clock corrections when a local Global Positioning System device, which is preferred, is 
not available. Noticeable clock corrections of more than 1 second should never be necessary. 
Historically, data have been captured, transferred, and processed in various ways. Today, 
electronics and telecommunications allow remote data collection from nearly any location. One 
option uses a physical connection between logger and a computer that is used for further data 
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analysis or that forwards the data via Internet connection. To avoid a cable connection, a 
cellphone network can be configured to provide virtual Internet links between a measurement 
station and the data center. Satellite uplinks and downlinks are also available for data transfers in 
areas that are not served by either wire- or cell-based phone service. Within the area of an 
observing station, wireless communications such as radio-frequency connectivity might be useful 
to minimize the need for long cables between radiometers and data loggers. Depending on the 
antennas, data can be transferred over distances of a few kilometers. Such distances can occur 
between the data logger and the control room in big solar power plants with several megawatts of 
electrical design power. 

To prevent data loss in case of connection problems, the memory of the data logger should be 
selected appropriately. Memory extensions are available for many data loggers with external 
cards.  

3.4 Station and Network Operations 
The protocols and procedures dictating station operations play a fundamental role in the 
assurance of data quality. These procedures must be established prior to the start of data 
collection, and then a process must be put into place to carry forth and document adherence to 
the procedures. Data quality is in great part established the moment the measurement is taken. If 
errors occur during the measurement, little can be done to improve fundamental quality. For 
example, a poorly maintained station with dirty optics or misaligned instruments will produce 
unreliable (large uncertainties or systematic biases) data, and the magnitude of the problem is not 
likely to be discernable until days or weeks later. Often, one can only guess at which 
approximate a posteriori adjustments (if any) to make.  

In this context, data quality control involves a well-defined supervisory process by which station 
operators are confident that when a measurement is taken with unattended instruments, the 
instruments are in a state that produces data of known quality. This process largely encompasses 
the calibration, inspection, and maintenance procedures discussed in Section 3.4.1, along with 
log sheets and other items that document the condition of the station. It also includes a critical 
inspection or assessment of the data to help detect problems not evident from physical inspection 
of the instruments. 

When designing and implementing a data quality plan, keep in mind that eventually the data set 
will undergo scrutiny for quality. In the best scenario (and a scenario that is certainly attainable), 
a data analyst will feel comfortable with the quality of the data set and will be willing to move 
unhindered to the analysis at hand. The plan should eliminate as much as possible any doubts 
and questions about how the data were collected and whether the values they contain are suitable 
for the intended purpose. Implementation of the best practices contained in this handbook help 
eliminate doubts and uncertainties that might jeopardize future projects. 

3.4.1 Equipment Maintenance 
Proper O&M practices are essential for acquiring accurate solar resource measurements. Several 
elements in a chain form a quality system. Collectively, these elements produce accurate and 
reliable solar resource data: station location, measurement system design, equipment installation, 
data acquisition, and O&M practices. Proper O&M requires long-term consistency, attention to 
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detail, complete and transparent documentation, and a thorough appreciation for the importance 
of preventive and corrective maintenance of sensitive equipment. 

Calibrations are performed with clean instrument optics and a carefully aligned/leveled instrument. 
To properly apply the calibration factor, the instrument should be kept in the same condition during 
field measurements as during the calibration. To maintain the calibration relationship between 
irradiance and radiometer output, proper cleaning and other routine maintenance are necessary. All 
O&M should be carefully documented with log sheets or preferably with electronic databases 
that contain enough information to reveal problems and solutions or to assert that the instruments 
were in good form when inspected. The exact times of the maintenance events should be noted 
rather than estimated. Time-stamped pictures taken before and after maintenance with a camera 
can be extremely useful to evaluate the importance of soiling and misalignment, for example. A 
button connected to the data logger that is pressed at the beginning and at the end of an 
inspection is also recommended. The O&M information enables an analyst to identify potentially 
bad data and provides important documentation to determine and defend the overall quality of 
the measurements. 

The maintenance process includes: 

• Checking the alignment/leveling of the detector. Pyrheliometers must be accurately 
aligned with the solar disk for accurate DNI measurements. Pyranometer detectors must 
be horizontal for GHI and DHI measurements and accurately tilted (or aligned with a flat-
plate collector) for GTI measurements. The radiometer orientation should be checked 
periodically using the features described earlier in this chapter. 

• Cleaning the instrument optics. To properly measure the solar irradiance, no contaminant 
should block or reduce the radiation falling on the detector. The outdoor environment 
provides many sources of such contamination, such as dust, precipitation, dew, frost, 
plant matter, insects, and bird droppings. The sensors should be cleaned regularly to 
minimize the effect of contaminants on the measurements. In many cases, this can require 
daily maintenance of radiometers, especially in the case of pyrheliometers. Different 
standards require or recommend different cleaning frequencies between daily and weekly. 

• Documenting the condition of the radiometer. For analysts to understand limitations of 
the data, conditions that affect the measurements must be documented. This includes 
substandard measurement conditions, but it is equally important to document proper 
operations to add credibility to the data set. Observations and notes provide a critical 
record of conditions that positively and negatively affect data quality. 

• Documenting the environment. As a consistency check, note the sky and weather 
conditions at the time of maintenance. Note any ground surface changes, such as 
vegetation removal or the presence of snow. This information is valuable when 
interpreting data from the radiometer, including measurements with unusual values. 

• Documenting the infrastructure. The whole measurement station should be examined for 
general robustness. Any defects should be noted and corrected. 

Maintenance frequency depends on prevailing conditions that soil the instruments. This includes 
dust, rain, dew, snow, birds, and insects. It also depends on instrument type. Radiometer designs 
based on optical diffusers as the surface separating the inside of the instrument from the 
environment are less susceptible to the effects of dust contamination than instruments with clear 
optics, such as domed pyranometers (Myers et al. 2002). This is because fine soiling particles 
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scatter much more than they absorb solar radiation. Absorption affects instruments with clear 
optics and diffusers the same way. In contrast, the scattering-induced soiling effect has less 
impact on instruments with diffusers because the latter can transmit most of what the particles 
have scattered. The scattered radiation (mostly in the forward direction) hence reaches the 
detector in nearly the same way that radiation would enter a clean diffuser. Conversely, the 
scattering often causes the incoming radiation to miss the detector in instruments with clear 
optics because the latter is some distance from the former. This is especially relevant for 
pyrheliometers (Geuder and Quaschning 2006). Soiling of windowed or domed radiometers can 
quickly affect their reading and increase their measurement uncertainty. This explains why 
thermopile radiometers must be cleaned very frequently (e.g., daily). As described earlier, using 
a ventilator for a pyranometer can reduce this risk of contamination; thus, it is important to 
consider the frequency and cost of maintenance for proper instrument specification. Although 
sensors with diffusers, such as RSIs, are not prone to strong soiling effects, they still require 
regular cleaning (e.g., twice per month). Note that a diffuser below a clear entrance 
window/dome does not have an advantage compared to a thermopile below the same clear 
entrance window/dome. 

Daily cleaning for sensors with clear optics or cleaning twice per month for sensors with 
diffusers as an outer surface is appropriate in most cases; however, different standards require or 
recommend different cleaning frequencies between daily (ISO TR9901) and weekly (IEC 61724-
1). It is recommended to determine the cleaning interval for each site depending on the climate 
conditions of similar sites or, e.g., by analyzing the immediate effect of cleaning on the 
measurement signal. Depending on the noted period after which soiling significantly influences 
the measurement, the cleaning interval can be adjusted so that the degradation in sensitivity is 
limited to an acceptable level (e.g., <1% for high-quality stations). Each cleaning period and the 
state of the sensors should be documented, and the measurement values should be checked to 
evaluate the effect of cleaning on the recorded values. 

Radiometers should be carefully cleaned at each inspection, even if soiling appears minimal. 
Cleaning is generally a very short procedure. A recommendation for the cleaning procedure is as 
follows. First, remove any loose particles from the entrance window with a soft brush or 
compressed air. Then clean the entrance window, dome, or diffuser with a dry cloth. If dirt 
remains after this step, wet a second cloth with distilled water (or methyl hydrate), and wipe the 
window/diffusor/dome clean. If ice sticks to the surface, try melting the ice with one’s hands. 
Avoid using a hair dryer to melt the ice because the heat can crack the cold optics. More 
aggressive methods might damage the entrance windows and are therefore not recommended. 

Collimators without entrance windows (as used in active cavity radiometers and at least one new 
commercially available, low-cost pyrheliometer) greatly reduce the accumulation of dust on the 
sensor’s entrance optics, but they could still be affected by insects or spiders because they can 
enter the collimators, causing strong signal reductions. Even a single fiber of a spiderweb can 
significantly reduce the signal; therefore, such collimators must be inspected frequently.  

At remote sites that could be too difficult to maintain during extended periods, a higher class 
windowed instrument might not be optimal, despite its potential for better measurements. The 
cost of maintenance for a remote site could dominate the estimated cost of setting up and 
operating a station. This aspect should be anticipated when planning a measurement campaign. 
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Often, less maintenance-intensive sensors with initially lower accuracy than windowed 
instruments can be a better choice, at least until the station becomes permanently serviceable on 
a sufficiently frequent basis. 

Additional spot inspections should be conducted after significant weather events (e.g., dust 
storms, snowstorms, heavy rainfall, rainfall during periods with high aerosol loads, and storms). 
Radiometer optics might not necessarily soil within a 24-hour period, but the effects of soiling 
can be best mitigated with frequent inspection.  

Maintenance at remote measurement sites away from institutional or corporate employment 
centers will require finding a qualified person nearby who can perform the necessary 
maintenance duties. The qualifications for maintenance are generally nontechnical, but they 
require someone with the interest and disposition to reliably complete the tasks. As a rule, 
compensating these people for time and vehicle mileage—rather than seeking volunteers— 
becomes a worthwhile investment in the long run because it sets up a firm contractual 
commitment to perform all necessary maintenance duties. Without that formal relationship, it can 
become difficult to assert the need for reliable and regular attention. 

A general conclusion is that a conservative maintenance schedule will support the credibility of 
the measurement data set and provide the analyst with a base of justification when assigning 
confidence intervals for the data. 

3.4.2 Data Inspection 
The collection of quality data cannot occur without careful and ongoing inspection of the data 
stream for evidence of error or malfunction. Although the maintenance procedures discussed in 
the previous section rely heavily on the physical appearance of the equipment to detect 
malfunction, some sources of error are so insidious that they cannot be revealed by simple 
physical observation; thus, an operations plan must include a careful inspection of the data itself 
for unrealistic values that might appear only with mathematical analysis. As with the inspections 
during equipment maintenance, inspection of data should be done with a frequency great enough 
to avoid prolonged error conditions that would impose a significant bias on the eventual 
statistical characterization of the data set.  

3.4.2.1 Data Quality Control and Assurance 
A successful quality-control process requires elements of quality assessment and feedback. 
Figure 3-24 depicts a quality-assurance cycle that couples data acquisition with quality 
assessment and feedback. 
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Figure 3-24. Information flow of a quality-assurance cycle. Image by NREL  

As shown in Figure 3-24, the information flows from data acquisition to quality assessment, 
where criteria are applied to determine data quality. The results of the quality assessment are 
analyzed and formed into feedback that goes back to the data acquisition module. The activities 
in the boxes can take several forms. For example, quality assessment could be the daily site 
inspection, and the analysis and feedback could be a simple procedure that adjusts the equipment 
malfunctions. Alternatively, the quality assessment could be a daily summary of data flags, and 
the analysis would then provide a determination of a specific instrument problem that is 
transmitted back to maintenance personnel, instructing them to correct deficiencies or to further 
troubleshoot problems. 

The faster the cycle runs, the sooner problems will be detected. This reduces the amount of 
erroneous data collected during failure modes. Conversely, if the site is inspected infrequently, 
the chances increase that a large portion of the data set would be contaminated with substandard 
measurements. More than one quality-assurance cycle can—and likely will—run at any time, 
each with a different period and emphasis, as noted: daily inspection, weekly quality reports, and 
monthly summaries. 

One practical aspect of this cycle is the importance of positive feedback—a regular report back 
to site personnel of high-quality operations. This positively reinforces a job well done and keeps 
site operators cognizant that data are being used and checked and that their efforts are an integral 
part of an ongoing process. It is often helpful to have an on-site person handle maintenance and 
address problems and a central facility that runs quality checks and spots potential problems with 
the data. Maintenance reports can advantageously include a photographic record of each 
radiometer, e.g., before and after cleaning or leveling.  

The quality-assurance cycle is important, and thus it should be well defined and funded to 
maintain consistent data quality over time. After the quality of the data is determined, 
corresponding conclusions must be made for further use of the data. In every case, the quality-
assurance data must be included in the data set as metadata. In some cases, the completeness of 
the data can even be improved based on the quality assurance. For example, data gaps from one 
sensor can be filled with the redundant data from related sensors. Gap filling is a complex topic 
that is not described in detail here. To calculate daily, monthly, or yearly sums, gap filling will 
nearly always be necessary, and it is recommended that the reader consider various publications 
concerning the topic for this type of correction (Hoyer-Klick et al. 2009; Espinar et al. 2011; 
Schwandt et al. 2014). Because data gaps can rarely be completely avoided in long time series, 
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and because gap filling might not always work during long periods of missing data, a critical 
problem is then to obtain correct estimates of the long-term (e.g., monthly or annual) averages, 
which are of utmost importance in solar resource assessments. Practical methods have been 
developed to overcome this problem with the minimum possible loss of accuracy, as described 
by Roesch et al. (2011a, 2011b). But in the context of this section, an investment in planning and 
funding for maintaining the quality of ongoing data collection can repay manifold in the 
believability of the final data set.  

Another systematic bias that savvy analysts might be able to address concerns the instrument’s 
calibration. If the recalibration of a sensor shows a noticeable change relative to the calibration 
factor that was used shortly before the recalibration, the data might be reprocessed with a 
corrected, time-variable calibration factor. For sun photometers, this kind of post processing is 
applied to the Aerosol Robotic Network (AERONET) Level 1.5 data to elevate them to Level 2 
(Holben et al. 1998). A distinct change in calibration factor can be assumed to be linear in time, 
and the data between two calibration periods are then reprocessed with a time series of this 
linearly corrected calibration factor. 

Finally, the systematic effects of soiling on measured irradiance data can be reduced a 
posteriori—at least to some extent. This requires any change in irradiance following the sensor 
cleaning to be documented. Examples of data correction methods can be found in Geuder and 
Quaschning (2006), Bachour et al. (2016), and Schüler et al. (2016); however, such a correction 
can result in acceptable accuracy only if the soiling effect is small (e.g., <1%). The availability of 
such a rough soiling correction method does not eliminate the stated requirement that instrument 
cleaning must be done frequently. For example, station operators cannot assume that a 
discontinuity observed at a single cleaning event can be generalized to encompass conditions 
leading up to all such cleaning events. As stated previously, the effect of soiling (and conversely, 
cleaning) on pyranometers with diffusing optics is generally less than that seen on pyranometers 
with clear optics (Maxwell et al. 1999); however, certain meteorological events can produce 
anomalous effects, even with instruments less prone to soiling. Figure 3-25 shows data from an 
RSI with diffusing optics, the effect of cleaning the day after a dust storm revealed a 5% 
attenuation in the measured value prior to maintenance. Documenting the magnitude of such 
occurrences can be difficult, particularly with a large measurement network. In extreme 
situations, the data analyst must simply be aware that some increase in measurement uncertainty 
is necessary. 
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Figure 3-25. Cleaning effect (~5%) on an RSI using a pyranometer with diffusing optics. Image by 

NREL 

3.4.2.2 Data Quality Assessment 
When assimilating a large volume of data, some measure of automated quality assessment must 
be employed. The methods can range from rudimentary—for example, the temporal behavior of 
data can be used to identify problems, such as blocked wind vanes or damaged cables; to more 
sophisticated methods to meet this demand as explained in the following and in Chapter 7, 
Section 7.7. Depending on how strict the screening parameters are and how their corresponding 
values are chosen, however, too many or too few events might be detected. A variety of 
factors—ranging from characteristics of the site and/or instruments to local weather conditions—
can affect the data and the validity of screening tests; therefore, the results of the automatic 
screening always demand a manual check by an expert to ensure their validity. Finally, 
additional data issues potentially known by the station’s supervisor must be included as 
comments or flags. Such information should be documented in the metadata (Section 3.4.2.3) 

As a general rule, data for inspection should be aggregated to some degree, typically in daily sets 
(Wilcox and McCormack 2011). This is because individual data points might not lend well to 
definitive conclusions about quality without the context of many nearby measurements. For 
example, a sudden change in solar irradiance can often be correlated with the passage of weather 
fronts that bring clouds and wind. And those conditions might also show a rapid change in 
temperature, adding to a compelling conclusion.  

Data inspection routines should be automated toward the end goal of presenting the quality 
analyst with on-demand visual plots to streamline the inspection process. This becomes 
particularly necessary for network operations with dozens of stations where hundreds of 
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thousands of measurements could be generated each day. Background processes can run 
automated data quality assessment routines and then plot the data and flags in a report readied for 
the quality analyst to begin inspection. For example, Figure 3-26 holds multiple panels with data 
graphs from a single station, providing the expert analyst thousands of data points that can be 
quickly scanned by eye and related with each other to spot inconsistencies. 

 
Figure 3-26. Multiple-grouped data plots for a single station for a single day: (left) three-

component irradiance data; (center) wind speed, temperature, and battery voltage; and (right) 
wind direction and barometric pressure. Image from NREL 

The flags can be visualized next to the data, as shown in Figure 3-27. Here, a suspicious period 
in the morning was detected by the automatic quality control and marked with the orange 
background. Of great help is the visualization of the difference between the measured DNI and 
the DNI calculated from collocated GHI and DHI measurements. This difference plotted over 
time can help to identify, for example, pyranometer levelling issues, radiometer soiling/dew, or 
tracking errors. 



Chapter 3-49 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 3-27 Time plot of the three irradiance components and the difference of measured and 

calculated DNI. Data marked by automatic quality control is marked with an orange background to 
guide the data analyst during the daily data control. Image from DLR, after Geuder et al. (2015) 

If redundant sensors are used, both measurements or their differences can be plotted and 
analyzed, which allows for detecting errors that affected only one of the instruments. Digital 
instruments and some ventilation units for pyranometers also provide additional useful 
information, such as the rotation speed of the ventilator, the sensor inclination, the sensor 
acceleration (shock sensor), or error codes. Such data are valuable for quality control and at 
times allow for corrections before the measurements are strongly affected by the error.  

A time series of some measurements can reveal error conditions before they become a problem. 
Figure 3-28 shows a plot of the daily battery voltage for a remote RSI instrument and indicates a 
charging problem. In this case, a technician was dispatched, parts were obtained, and the 
charging circuit was repaired before the instrument lost power and data were lost. 

The addition of data quality flags to the data files is an extremely important step in the quality 
assurance process. For example, the SERI QC software for irradiance measurements (Maxwell, 
Wilcox, and Rymes 1993) (see Chapter 7, Section 7.7.1) produces flags that can be plotted and 
included in the rapid visual inspection paradigm (see Figure 3-29). These flags are plotted in the 
left panel to show a gradation of flag severity from low (dark blue) to high (red) for each minute 
of a month. To aid the analysis, each solar measurement’s K-space value is plotted in the right 
three panels, allowing the analyst to find measurement periods that correspond with periods of 
high flags. Although Figure 3-29 shows a plot for a calendar month, these reports can be 
generated daily in a moving window to show flagging from previous weeks that lead up to the 
current day. This allows the analyst to detect error trends early and to formulate a correction. 
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Figure 3-28. Time-series plot of battery voltage as a diagnostic tool. Figure from NREL 

 
Figure 3-29. Plots of SERI QC flags (left panel) for 1 month (y-axis) by hour of day (x-axis). The 

three right panels plot associated K-space values. Image from NREL 

In all these examples, the automated reports should be generated daily (or some other interval 
consistent with the end use of the data) in preparation for a scheduled session by the analyst, 
minimizing the amount of manpower required for a thorough data inspection.  

Other automated procedures, usually implemented in the data ingest system, employ more 
rudimentary bounds checking, parameter coupling, and detection of missing data. These checks 
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provide near-real-time triggers for automated email messages to alert operators that a potential 
error condition exists. These alerts are a first line of defense against serious failures in the 
system. 

3.4.2.3 Metadata and Record-Keeping 
The interpretation and application of solar resource measurements depend greatly on the efforts 
to record and include metadata relevant to the observations. This includes site location; 
quantitative local horizon surveys with a device visualizing the solar path during the year; data 
acquisition system(s); input signal channel assignments; radiometer types, models, serial 
numbers, calibration histories, and installation schemes; and information on eventual post 
processing of the data and maintenance records. For example, online metadata are available from 
NREL’s Solar Radiation Research Laboratory.8 Such metadata should be included with the 
archiving of the measured solar resource data. Examples of issues that need to be documented 
include damaged or misaligned sensors, maintenance works on the instruments, detection of 
soiled sensors and subsequent sensor cleaning, obstructed sensors, temporarily erroneous 
calibration constants in the program code, loose electrical connections, and data logger clock 
error. These events are frequently not detected automatically or sometimes not even detectable 
by automatic quality-control screening tools; hence, manual on-site checks are required. The 
metadata should not necessarily be limited to error conditions and corrections. Information about 
unusual weather events, animal activity, or even significant flora blooms or vegetation die-off 
events could prove useful in future analyses that could benefit from knowledge of the 
measurement environment. Such supplementary information could convey to an auditor that the 
station operators were thorough in recording station details.  

When deciding on a metadata archival method, some consideration should be given to the pros 
and cons of paper (physical) versus electronic storage. Paper, though not immune to peril, is a 
simple form that can be read for decades or even centuries. Electronic formats, which are 
invaluable for easy access and extraction for computer analyses, are too often subject to 
catastrophic loss through myriad electronic mishaps. Further, changes in the format of once 
commonplace electronic storage schemes might also render historic metadata unreadable or 
inaccessible. Using both methods simultaneously solves many of these problems, but it can 
create new issues with the additional labor for double entry or possible inconsistencies between 
the two methods. 

Figure 3-30 shows a sample paper log that a maintenance technician is required to complete on-
site during the maintenance visit. The log not only provides a checklist to ensure a complete 
inspection but also serves as permanent documentation for the station archive.  

 
8 See http://www.nrel.gov/midc/srrl_bms.  

http://www.nrel.gov/midc/srrl_bms
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Figure 3-30. Sample paper maintenance log sheet to be filled out by a technician on-site during a 

maintenance visit. Image from NREL 

Figure 3-31 shows a (partial) online log form that allows the maintenance technician to remotely 
access a database interface. Each item in the prescribed maintenance checklist is reported to 
complete the documentation for the station visit. The log sheet streamlines much of the 
documentation with codes and checkmarks, and it provides space for freehand comments to 
describe unusual conditions. For paper logs and online logs, protocols must be in place to ensure 
that the technician is actually performing the tasks that appear in the logs. At a minimum, station 
management must be aware of the possibility that a dishonest technician might develop creative 
ways to falsify a work product. There are ways to remotely verify that the maintenance protocol 
is being followed. In many cases, when instruments are cleaned, an anomaly appears in the data 
while the sky irradiance is blocked. The analyst can look at a data plot at the logged time of the 
visit, and if no disruption appears, further investigation could be warranted. Some systems 
provide a momentary switch or button that the technician is required to push when arriving on-
site. This action places a flag in the data stream verifying that the technician was on-site for the 
inspection. Remote video cameras can also be a valuable means to verify a proper inspection. 
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Figure 3-31. Sample online interface for documenting maintenance. Image from NREL 

Analysts—whether associated with station operations or employed in a later due diligence 
process—are immensely aided by ample documentation of station O&M. The documentation, in 
addition to providing the specific information contained, also indicates the extent of the 
maintenance protocol. This gives the analyst confidence that problems are discovered and 
corrected in a minimal amount of time. Further, the documents show that even at well-run stations 
with a few inevitable malfunctions, best practices and high-quality data govern operations. 

Complete documentation includes thorough information in a dedicated metadata archive about 
the instruments, including manufacturer and model, serial number, calibrations (current and 
historical), deployment location and configuration, repairs, and inventory or storage details. Of 
particular importance is the record of instrument calibrations and the associated certificate, 
traceability, and statement of uncertainty. The calibration record is fundamental to the 
measurement itself and the assignment of uncertainties to the measured data. Absent a current 
calibration certificate, a knowledgeable analyst performing validation or due diligence on a data 
set will likely reject any statement of uncertainty, rendering the measurements highly 
questionable.  
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3.4.3 Data Aggregations and Summaries 
Solar irradiance measurements for renewable energy applications are becoming more common, 
and in some electric utility applications, they are required. These measurements are also 
important for applications in energy-efficiency and climate research. Measurement station design 
includes data loggers and their configuration as described in Section 3.3.5. Ideally, the station 
designers will have knowledge in advance about the form (necessary parameters, time resolution, 
period of record, acceptable uncertainty limits, etc.) of the data required to complete the planned 
analyses to satisfy the project objectives. But this is not always the case. Further, it is quite 
common for data sets to be accessed for uses other than their original purpose; thus, the value of 
a data set could be significantly enhanced if it is in a more generic form that is easily adaptable 
or convertible to other more specific forms. This typically relates to the frequency of the 
measurements, which could range from 1 minute to monthly or even yearly. 

As noted in Section 3.3.5, the time resolution of the measurements can be increased without 
significantly increasing the costs for data transfer and storage when compared with the overall 
costs of operating a station. Because data values can be easily converted to longer timescales, it 
is recommended that the station be designed to collect data at 1-minute intervals.9 Many 
commercially available data loggers are capable of sampling the instruments near 1 Hz and then 
integrating the samples to a 1-minute value (or some other chosen time interval). These values 
are quite often represented with a unit of W/m2, but the correct unit from this process is W-
minute/m2. Most solar analytical tools expect values in Wh/m2, so the conversion must be made 
prior to further averaging to daily, monthly, or annual values. As a practical matter, the 
conversion to Wh/m2 can be made by averaging the 1-minute values for 1 hour. The result is 
mathematically the same as the more descriptively correct method of adding the 60 values in W-
minute/m2 and dividing by 60 minutes to convert from the minute to the hourly unit. 

Some analytical tools expect hourly values during the period of interest, often a full year. Other 
tools might expect daily total energy, and others monthly mean daily totals. The conversion from 
Wh/m2 can then be made to the daily total in Wh/m2 per day by simply adding the hourly values 
from a single day. From there, the conversion to monthly mean daily totals is accomplished by 
averaging the daily totals for the month. Examples of reporting monthly solar irradiance 
measurements are available from https://midcdmz.nrel.gov/apps/report.pl?site=BMS. 

In addition to the statistics described, some applications (power plant load matching or building 
design) look for long-term values by hour of day, for example, the average energy available 
throughout a month at 11:00. These slices are formed by sorting the hourly data by time stamp 
and then averaging the subsets during the desired period. 

Aggregating solar irradiance and meteorological measurements over various timescales also 
requires careful attention to methods for estimating the associated measurement uncertainties. 
This is currently an active area of research that will be addressed in future editions of this 
handbook. 

 
9 Data recording at time intervals as short as 1 second has been needed for research applications requiring special 
attention to the radiometer performance specifications. (See https://dx.doi.org/10.5439/1052451.)  

https://midcdmz.nrel.gov/apps/report.pl?site=BMS
https://dx.doi.org/10.5439/1052451
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4.1 Introduction 
High-quality solar resource assessment accelerates technology deployment by making a positive 
impact on decision making and by reducing uncertainty in investment decisions. Global 
horizontal irradiance (GHI), global tilted irradiance (GTI), and/or direct normal irradiance (DNI) 
are the quantities of interest for solar resource assessment and characterization at a particular 
location. Surface-based measurements of DNI and GHI can be made only on a relatively sparse 
network, given the costs of operation and maintenance. GTI is rarely measured in radiometric 
networks. Nevertheless, observations from ground networks have been used in conjunction with 
models to create maps of surface solar radiation (Gueymard 2008a). Another option is to use 
information from geostationary satellites to estimate GHI and DNI at the surface (Cano et al. 
1986; Diabate et al. 1988; Pinker and Laszlo 1992; Beyer, Costanzo, and Heinemann 1996; Perez 
et al. 2002; Rigollier et al. 2004; Cebecauer and Suri 2010; Qu et al. 2016). Because different 
geostationary satellites are available at different longitudes around the world, radiation can be 
available for the entire globe (at least between latitudes from approximately -60° to +60°) at 
temporal and spatial resolutions representative of a particular satellite. For northern and southern 
high latitudes, a compilation of satellite-derived data based on observations from polar orbiters 
offers good spatial coverage but typically at a lower spatiotemporal resolution (Karlsson et al. 
2017a, 2017b; Kato et al. 2018). 

Solar radiation models that use only ground-measured input parameters were used in the past 
when satellite or weather-model-derived databases were not available. Examples of such models 
are briefly mentioned for historic reasons. One popular historic model type is based on data from 
the Campbell-Stokes sunshine duration recorder. The monthly mean GHI is derived using a 
regression fit to the number of sunshine hours measured by the sunshine recorder’s burn marks 
when direct solar irradiance exceeds a threshold value of ≈120 W/m2. The regression coefficients 
are calculated using existing GHI measurements at specific locations. The exact method to 
calculate GHI using sunshine recorder information is empirical and therefore specific to each 
geographic area. Moreover, the meteorological services of some countries, such as the United 
States and Canada, have stopped measuring sunshine duration because of the limited quality and 
significance of this measurement, which is not standardized and varies from one country to 
another.  

In the absence of surface radiation measurements, estimates of surface radiation can be made 
using routine meteorological ground measurements and human observations of cloud cover in a 
radiative transfer model (Marion and Wilcox 1994). For instance, the METeorolgoical-
STATistical (METSTAT) model (Maxwell 1998) used information about cloud cover, water 
vapor, ozone, and aerosol optical depth (AOD) to develop empirical correlations to compute 
atmospheric transmittance extinction during both clear- and cloudy-sky conditions.  That model 
was used to create earlier versions of the U.S. National Solar Radiation Database (NSRDB) 
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(1991–2005) (e.g., George et al. [2007]). Similar developments have been carried out in Europe 
with successive versions of the European Solar Radiation Atlas (Page, Albuisson, and Wald 
2001). 

Long-term GHI data can also be obtained from various numerical weather prediction (NWP) 
models, either by operating them in reanalysis mode or from actual operational weather 
forecasts. Examples of reanalysis data include the ERA5 (Hersbach et al. 2019; Trolliet et al, 
2018) from the European Center for Medium-Range Weather Forecasting (ECMWF) and the 
Modern Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from 
the National Aeronautics and Space Administration (NASA) (Bosilovich, Lucchesi, and Suarez 
2016; Trolliet et al. 2018). Weather forecasts such as those from the ECMWF’s Integrated 
Forecasting System (IFS) and the National Oceanic and Atmospheric Administration’s 
(NOAA’s) Global Forecast System (GFS) can also provide estimates of GHI. Such estimates, 
however, are typically not as accurate as those derived from satellite-based models, and they 
require careful bias corrections (Boilley and Wald 2015, Urraca et al, 2018).  

This chapter contains an introduction to satellite-based models, information about currently 
operational models that provide surface radiation data for current or recent periods, a summary 
of radiative transfer models used in the operational models, and a discussion of uncertainty in 
solar-based resource assessments. A short discussion on NWP-based solar radiation data is also 
included. 

4.2 Estimating the Direct and Diffuse Components from Global 
Horizontal Irradiance 

During clear and partly cloudy conditions, diffuse irradiance on a horizontal surface, DHI, is 
often only a relatively small part (<30%) of GHI. During dense overcast conditions, GHI and 
DHI should be identical. When no simultaneous DHI or DNI measurements exist and no 
alternate determinations are available—for example, from physical-based satellite-based 
models—DNI and DHI must be estimated from GHI data. Many models based on empirical 
correlations between GHI and either DHI or DNI data have been developed since Liu and Jordan 
(1960); Erbs, Klein, and Duffie (1982); Maxwell (1987); Perez et al. (1990); and Louche et al. 
(1991). More recently, Engerer (2015), Gueymard and Ruiz-Arias (2016), Aler et al. (2017), and 
Yang and Gueymard (2020) extended this empirical methodology to obtain DNI and DHI at a 1-
minute resolution. These algorithms use empirical correlations between the global clearness 
index, Kt = GHI/[ETR cos(SZA)], and the diffuse fraction, K = DHI/GHI, the diffuse clearness 
index (i.e., the diffuse transmittance), Kd = DHI/[ETR cos(SZA)], or the direct clearness index 
(direct transmittance), Kn = DNI/ETR. All these separation models are derived empirically. 
There are reviews of substantial literature on this topic (e.g., see Gueymard [2008a], Gueymard 
and Ruiz-Arias [2016], and Tapakis et al. [2016]). Analysts should note that some hourly 
separation models, including the most popular ones, might not perform correctly if used with 
subhourly data (Gueymard and Ruiz-Arias 2016). 

4.3 Estimating Irradiance on a Tilted Surface 
Solar conversion systems, such as flat-plate collectors or non-concentrating photovoltaics (PV), 
are tilted toward the equator to increase their solar resource. Estimating or modeling the 
irradiance incident upon them is essential to predicting their performance and yield. This 
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irradiance incident on the plane of array (POA) is usually called GTI, or sometimes simply POA. 
GTI can be measured directly by pyranometers that are tilted the same as the collector plane. 
Modeling GTI mainly requires data of the three main components on the horizontal surface 
(GHI, DNI, and DHI). GTI can be estimated as the sum of the incident beam, incident sky 
diffuse, and incident ground-reflected irradiances on the tilted surface; see Eq. 2-2b. The incident 
beam contribution is simply a straightforward geometric transformation of DNI, requiring only 
the angle of incidence of DNI on the tilted plane. The ground-reflected contribution is generally 
small for tilts less than 45°, unless the ground is covered with snow. A simple estimation is 
possible but requires several assumptions: the foreground is assumed infinite, horizontal, and of 
isotropic reflectance. In practice, however, the reflected irradiance incident on PV panels outside 
of the front row would be overestimated with this approach. 

The main difficulty is the computation of the sky diffuse irradiance, which has been studied by 
many authors with different approaches ranging from the simplest isotropic model to more 
elaborate and complex formulations (Gueymard 1987; Kambezidis, Psiloglou, and Gueymard 
1994; Khalil and Shaffie 2013; Liu and Jordan 1960; Loutzenhiser et al. 2007; Muneer and 
Saluja 1985; Olmo et al. 1999; Padovan and Del Col 2010; Ridley, Boland, and Lauret 2010; 
Wattan and Janjai 2016; Xie et al. 2016). See the recent review of these models in Yang (2016). 
Based on the existing studies of the literature, one of the most widely used and validated models 
is the Perez model (Perez et al. 1987, 1988, 1990). It is the result of a detailed analysis of the 
isotropic diffuse, circumsolar, and horizon brightening irradiances that are computed by using 
empirically derived parameters. This approach works well with hourly data, but recently it has 
been found to generate erroneous values with subhourly data when Kt >1 (i.e., under cloud-
enhancement conditions) (Gueymard 2017).  

4.4 Introduction to Satellite-Based Models 
The goal of satellite-based irradiance models is to use observed information about top-of-
atmosphere (TOA) upwelling radiances and atmospheric and surface albedos to derive GHI and 
DNI at the surface of the Earth. During the last decades, satellite-based retrievals of GHI have 
been used, for example, for climate studies (Justus et al. 1986). A broad overview of these 
methods was published by Renné et al. (1999). These methods were originally divided into 
subjective, empirical/statistical, empirical/physical, and physical methods (Pinker, Frouin, and Li 
1995; Schmetz 1989; Myers 2013). The empirical/statistical methods are based on developing 
relationships between satellite- and ground-based observations; the empirical/physical and 
theoretical methods estimate surface radiation directly from satellite information using retrieval 
schemes to determine the atmospheric properties important to radiative transfer. Most 
empirical/statistical and empirical/physical models are now classified as semiempirical because 
they involve the development of intermediate relationships either to relate satellite observations 
with surface radiation measurements or to convert satellite observations directly to solar 
radiation estimates. Empirical and semiempirical methods generally produce only GHI and 
require additional models (see Sections 4.2 and 4.4.3) to calculate DNI from GHI. Physical 
models, on the other hand, generally follow a two-step process that derives cloud optical 
properties using the satellite radiances in the first step and then computes GHI and DNI using 
these cloud properties in a radiative transfer model in the second step. 
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4.4.1 Geostationary Satellites 
Geostationary satellites located above the equator that orbit at the same rate as the Earth’s 
rotation provide continuous coverage of their field of view. Observations are usable up to 
latitudes 60° N and 60° S because of the Earth’s curvature, as shown in Figure 4-1. The current 
Geostationary Operational Environmental Satellite (GOES) series covers North and South 
America (full disk) every 10–15 minutes and the Northern Hemisphere every 5 minutes. Two 
GOES satellites (GOES-East/GOES-16 and GOES-West/GOES-17) operate concurrently and 
provide 5-minute coverage for the entire United States. The Advanced Baseline Imager (ABI) on 
the current GOES satellites makes radiance observations in 16 wavelength bands, or spectral 
regions (see Table 1) (Schmit et al. 2005; Schmit 2018). GOES-16 became operational in 2018, 
and GOES-17 became operational in 2019. The wavelengths in Table 1 are representative of the 
latest generation of geostationary satellite and are similar to those used on the Himawari series of 
satellites. The previous version of the GOES-East and GOES-West series provided data for five 
channels (one visible, four infrared) every 30 minutes for the Northern Hemisphere and every 3 
hours at full disk.  

Table 4-1. GOES-16 and GOES-17 ABI Bands 

ABI  
Band 

Central  
Wavelength (µm) Type Spatial  

Resolution at Nadir (km) 

1 0.47 Visible 1 
2 0.64 Visible 0.5 
3 0.86 Near-infrared 1 
4 1.37 Near-infrared 2 
5 1.6 Infrared 1 
6 2.2 Infrared 2 
7 3.9 Infrared 2 
8 6.2 Infrared 2 
9 6.9 Infrared 2 

10 7.3 Infrared 2 
11 8.4 Infrared 2 
12 9.6 Infrared 2 
13 10.3 Infrared 2 
14 11.2 Infrared 2 
15 12.3 Infrared 2 
16 13.3 Infrared 2 

The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 
owns the Meteosat series of satellites that covers Europe, Africa, Middle East, the Indian Ocean, 
and western Asia. The visible and infrared imager on the Meteosat First Generation (MFG) 
satellites (up to Meteosat-7) had three visible channels, water vapor (6.2 µm), and infrared. The 
visible channel produced a 5-km nadir resolution; the infrared channel’s nadir resolution was 
also 5 km. Moreover, there were two channels with 2.5-km resolution, in interleaved format. 
Imagery had a repetition frequency of 30 minutes. The Spinning Enhanced Visible and InfraRed 
Imager (SEVIRI) on the Meteosat Second Generation (MSG) satellites (Meteosat-8 onward) 
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provides satellite imagery every 15 minutes at a nominal 3-km resolution for 11 channels 
(Schmetz et al. 2002). The 12th channel, a high-resolution visible channel, has a nadir resolution 
of 1 km. 

The Himawari-8 is a third-generation satellite similar to GOES-16 and the EUMETSAT’s 
Meteosat Third Generation (MTG) satellites and covers East Asia and the Western Pacific. 
Himawari-8 was launched in October 2014 and harbors the Advanced Himawari Imager, which 
has characteristics similar to the ABI (Besho et al. 2016). Of the 16 bands, the visible and near-
infrared bands measure resolutions at 0.5 km or 1 km, whereas the infrared bands measure at 2 
km. A full-disk image is produced every 10 minutes, and the sectors are generated every 2.5 
minutes. Himawari-8 replaced the Multifunctional Transport Satellite series of satellites, which 
had been in operation since 2005. 

 
Figure 4-1. Location of the current geostationary satellites that provide coverage around the 

globe. Image from NREL 

4.4.2 Polar-Orbiting Satellites 
Polar-orbiting satellites are used to continuously sense the Earth and retrieve cloud properties 
and solar radiation at the surface. An example of one such instrument is the Advanced Very High 
Resolution Radiometer (AVHRR) on the NOAA series of polar-orbiting platforms. Other 
examples are the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and 
the Earth's Radiant Energy System (CERES) instruments on NASA’s Aqua and Terra satellites. 
The Joint Polar Satellite System (JPSS) series of satellites is expected to replace the legacy 
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NOAA polar satellites. The first satellite in the JPSS series was launched in 2011 and is called 
the Suomi National Polar-Orbiting Partnership. The second satellite, NOAA-20, was launched in 
2017. This next-generation series of satellites has multiple instruments, including the Visible 
Infrared Imaging Radiometer Suite, Cross-track Infrared Sounder, Advance Technology 
Microwave Sounder, Ozone Mapping and Profiler Suite, and CERES. Although polar orbiters 
provide global coverage, their temporal coverage is limited because of their orbit, in which they 
essentially cover a particular location only once per day at the lower latitudes. At higher 
latitudes, a combination of many polar-orbiting, satellite-based products is recommended to 
achieve a sufficient temporal resolution while also benefiting from better spatial resolution. 

4.4.3 Satellite-Based Empirical and Semiempirical Methods 
Satellite-based semiempirical methods consider a pseudo-linear correlation between the 
atmospheric transmittance and the radiance sensed by the satellite. Semiempirical models are 
classified as such because of their hybrid approach to retrieving surface radiation from satellite 
observations, in which the normalized satellite-observed reflectance is related to GHI at the 
surface. Cloud-cover indices that use visible satellite imagery are first created with budget 
equations between TOA and surface radiation. Those indices are then used to modify the clear-
sky GHI and estimate GHI at the ground consistent with the cloud scene. DNI can then be 
derived from GHI and the clear-sky DNI using one of the empirical methods discussed later in 
this subsection. The semiempirical approach was originally designed to create regression 
relationships between what is simultaneously observed by a satellite and ground-based 
instruments (Cano et al. 1986; Hay et al. 1978; Justus et al. 1986; Tarpley 1979). The method 
developed by Cano et al. (1986) is called the Heliosat method. It has been regularly updated and 
modified to rely on atmospheric transmittance properties of water vapor and aerosols to provide 
solar radiation estimates under clear-sky conditions rather than direct empirical relationships 
with ground data.  

The original Heliosat method evaluates the clearness index, Kt, or the ratio of the radiative flux at 
the Earth’s surface and the radiative flux at the TOA (which is known), using the relationship:  

 Kt = a n + b (4-1) 

where a and b are the slope and intercept of the assumed linear relation, and n is the so-called 
cloud index defined as: 
 n = [ρ – ρg] / [ρcloud – ρg]  (4-2) 

where ρ, ρcloud, and ρg are the satellite-based reflectance observations of the current scene, of the 
brightest clouds, and of the ground, respectively. The cloud index is close to 0 when the 
observed reflectance is close to the ground reflectance (i.e., when the sky is clear). It can be 
negative if the sky is very clear, in which case ρ is smaller than ρg. The cloud index increases as 
clouds appear, and it can be greater than 1 for clouds that are optically very thick. 

The parameters a and b in Eq. 4-1 can be derived empirically by comparison with coincident 
ground measurements or they can determined based on the physical principles of atmospheric 
transmittance, which include not only the cloud index but also the influence of aerosols, water 
vapor, and trace gases. Diabate et al. (1988) observed that three sets of parameters for the 
morning, noon, and afternoon were needed for Europe. The Heliosat method (and all cloud-
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index-based methods) requires the determination of cloud-free and extremely high cloud 
reflectivity instances to establish bounds to Eq. 4-1. Espinar et al. (2009) and Lefèvre, Wald, and 
Diabate (2007) found that a relative error in the ground albedo related to errors in determining 
the reflectivity from a cloud-free pixel leads to a relative error of the same magnitude in GHI 
under clear‐sky conditions, which corresponds to approximately 10% of the GHI in clear cases. 
In cloudy cases, the error, which is caused by an error in the limit for the albedo of the brightest 
clouds, increases as cloud optical depth (COD) increases, and the relative error in the GHI can 
reach 60% (Espinar et al. 2009; Lefèvre, Wald, and Diabate 2007). 

Beyer, Costanzo, and Heinemann (1996) developed an enhanced version of the Heliosat method 
called Heliosat‐1. One major enhancement was the adoption of the clear‐sky index, Kc (the ratio 
of the actual GHI to the GHI under ideal clear conditions), instead of the clearness index, Kt. 
This resulted in the relationship Kc = 1 – n, which simplified the method. Additional work was 
done to remove the dependence of the satellite radiance based on the sun-to-satellite geometry, 
thereby leading to a more spatially homogeneous cloud index. In addition, the determination of 
ground albedo and cloud albedo was improved by Beyer, Costanzo, and Heinemann (1996). 
Rigollier et al. (2004) developed Heliosat-2, which further enhanced Heliosat-1 by removing 
parameters that needed to be tuned and replacing them with either constants or values that can be 
computed automatically during the process. The HelioClim-3 and Solar Energy Mining 
(SOLEMI) databases, produced by MINES ParisTech and DLR, respectively, use Heliosat-2. 
The Heliosat-3 version was designed collaboratively by the University of Oldenburg, MINES 
ParisTech, and DLR, among others, and it uses the SOLIS clear-sky model, which approximates 
radiative transfer equations for fast implementation (Müller et al. 2004). Centro de 
Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and its spin-off, 
IrSoLaV, performed remarkable modifications on the Heliosat-3 scheme. This resulted in a 
different model, which includes a clear-sky detection algorithm, different possible clear-sky 
models with atmospheric component data sets as input, and a dynamic model for estimating the 
ground albedo as a function of the scattering angle (Polo et al. 2012, 2013). 

Hay et al. (1978) developed a regression model that relates the atmospheric transmittance to the 
ratio of incoming to outgoing radiation at the TOA. The transmittance was then used to derive 
GHI. In this method, the coefficients of the regression model change significantly based on 
location, and they need to be trained with surface observations (Nunez 1990) to produce accurate 
results. The Tarpley (1979) method also used the well-known relation between surface radiation, 
TOA radiation (both upwelling and downwelling), and atmospheric transmittance to create three 
separate regression equations. The regression equations were classified based on sky conditions 
labeled as clear, partly cloudy, and cloudy, and they were used accordingly. 

Models such as those developed by Perez et al. (2002), Rigollier et al. (2004), and Cebecauer and 
Suri (2010) evolved from Cano et al. (1986) and included refinements to address albedo issues, 
when the surface is covered by snow, and the effects of sun-satellite geometry. Some of these 
models have since been modified to include the simplified SOLIS model (Ineichen 2008), and 
are used to estimate GHI first and then DNI after component separation (Section 4.2).  

4.4.4 Satellite-Based Physical Models 
Physical models generally use radiative transfer theory to directly estimate surface radiation 
based on first principles using cloud properties, water vapor, AOD, and ozone as inputs. The 
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radiative transfer models can be classified as either broadband or spectral, depending on whether 
the radiative transfer calculations involve a single broadband calculation or multiple calculations 
in different wavelength bands. 

The broadband method of Gautier et al. (1980) used thresholds depending on multiple days of 
satellite pixel measurements to determine clear and cloudy skies. Separate clear-sky and cloudy-
sky models were then used to evaluate the surface DNI and GHI. The clear-sky model initially 
included water vapor and Rayleigh scattering but progressively added ozone (Diak and Gautier 
1983) and aerosols (Gautier and Frouin 1984). Assuming that attenuation caused by the 
atmosphere does not vary from clear to cloudy conditions, Dedieu, Deschamps, and Kerr (1987) 
created a method that combines the impacts of clouds and the atmosphere. This method uses a 
time series of images to determine clear-sky periods for computing surface albedo. Darnell et al. 
(1988) created a parameterized model to calculate surface radiation using a product of the TOA 
irradiance, atmospheric transmittance, and cloud transmittance. Developed with data from polar-
orbiting satellites, this model used collocated surface and satellite measurements to create 
relationships between cloud transmittance and planetary albedo. 

Möser and Raschke (1983) created a model based on the premise that GHI is related to fractional 
cloud cover and used it with Meteosat data to estimate solar radiation over Europe (Möser and 
Raschke 1984). The fractional sky cover was determined to be a function of satellite 
measurements in the visible channel. This method uses radiative transfer modeling (Kerschgens 
et al. 1978) to determine the clear- and overcast-sky boundaries. Stuhlmann et al. (1990) have 
since enhanced the model to include elevation dependence and additional constituents as well as 
multiple reflections in the all-sky model. 

An important spectral model developed by Pinker and Ewing (1985) divided the solar spectrum 
into 12 intervals and applied the Delta-Eddington approximation for radiative transfer (Joseph et 
al. 1976) to a three-layer atmosphere. The primary input to the model is the COD, which can be 
provided from various sources. This model was enhanced by Pinker and Laszlo (1992) and used 
in conjunction with cloud information from the International Satellite Cloud Climatology Project 
(ISCCP) (Schiffer and Rossow 1983). Another physical method involves the use of satellite 
information from multiple channels to derive cloud properties (Stowe et al. 1999) and then 
evaluate DNI and GHI using the cloud properties in a radiative transfer model. This method, 
called CLOUDS, was originally developed using the polar-satellite data from the AVHRR 
instrument onboard NOAA satellites, and the processing system was called Clouds from 
AVHRR Extended System (CLAVR-x) (Heidinger 2003; Pavolonis et al. 2005). This method 
has been modified and enhanced to use cloud properties from the GOES satellites (Heidinger 
2003; Pavlonis et al. 2005). In 2013, CLAVR-x was updated again to support the generation of 
higher spatial resolution output for the NOAA National Centers for Environmental Prediction 
and incorporated many algorithm improvements from the GOES-R Algorithm Working Group 
effort. 

The cloud information produced from the CLAVR-x type of algorithms can then be input to a 
radiative transfer model, such as the Fast All-sky Radiation Model for Solar applications 
(FARMS) (Xie et al. 2016), to calculate GHI and DNI, as has been done for the development of 
the most recent versions of the National Renewable Energy Laboratory’s (NREL’s) gridded 
NSRDB (1998–2015). 
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Another cloud retrieval scheme, called AVHRR Processing scheme Over cLouds, Land, and 
Ocean (APOLLO), was developed by Kriebel et al. (1989, 2003) for the AVHRR instrument. 
APOLLO has been adapted for use with data obtained from the SEVIRI instrument on the MSG 
satellite. APOLLO-derived cloud products, including COD and cloud type, can be used in a 
radiative transfer model such as Heliosat-4 (Oumbe 2009; Qu et al. 2016), made operational by 
the Copernicus service (http://www.copernicus-atmosphere.eu). 

The ISCCP (Schiffer and Rossow 1983) was established in 1982 as part of the World Climate 
Research Programme. The ISCCP cloud products include COD, cloud top temperature, cloud 
particle size, and other cloud properties that could be used to derive surface radiation. 

Physical models are computationally more intensive than empirical and semiempirical models. 
Advantage of physical models, however, are that they can use additional channels from new 
satellites (such as MSG or GOES-16) to improve cloud property retrieval and can include 
physical properties of aerosols and other gaseous species, such as water vapor, explicitly. 

4.5 Clear-Sky Models Used in Operational Models 

4.5.1 Bird Clear-Sky Model 
The Bird clear-sky model (Bird and Hulstrom 1981) is a broadband algorithm that produces 
estimates of clear-sky direct beam, hemispherical diffuse, and total hemispherical solar radiation 
on a horizontal surface. The model uses a parameterization based on radiative transfer 
computations and comprising simple algebraic expressions. Model results are expected to agree 
within ±10% with detailed high-resolution spectral or broadband physics-based radiative transfer 
models. The model can be used at resolutions of 1 minute or better and can duly accept inputs at 
that frequency, if available. In the absence of high-temporal-resolution input parameters, 
however, climatological or annual average values can be used alternatively as inputs to the 
model. The Bird clear-sky model also forms the basis of the clear-sky part of METSTAT, with 
only minor modifications. The performance of these two models has been assessed rigorously 
and compared to other algorithms (Badescu et al. 2012; Gueymard 1993, 2003a, 2003b, 2004a, 
2004b, 2012; Gueymard and Myers 2008; Gueymard and Ruiz-Arias 2015). 

4.5.2 European Solar Radiation Atlas Model  
The European Solar Radiation Atlas (ESRA) model is another example of a clear-sky model 
(Rigollier et al. 2000). Used in the Heliosat-2 model that retrieves GHI from satellites, this model 
computes DNI, GHI, and DHI using Rayleigh optical depth, elevation, and the Linke turbidity 
factor as its inputs. The performance of the model has been evaluated at various locations 
(Badescu et al. 2012; Gueymard and Myers 2008; Gueymard 2012; and Gueymard and Ruiz-
Arias 2015). 

4.5.3 SOLIS Model 
The SOLIS model (Müller et al. 2004) is a relatively simple spectral clear-sky model that can 
calculate DNI, GHI, and diffuse radiation based on an approximation to the Lambert-Beer 
relation for computing DNI: 

 I = I0 e(-M*τ)  (4-3) 

http://www.copernicus-atmosphere.eu/
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where: 

• τ is the atmospheric optical depth at a specific (monochromatic) wavelength  
• M is the optical air mass 
• I0 is the TOA spectral direct irradiance for a monochromatic wavelength 
• I is the DNI at the surface for a monochromatic wavelength. 

This equation is modified to account for slant paths and adapted for global and diffuse radiation. 
The modified Lambert-Beer relation (Müller et al. 2004) is: 

 I(SZA) = I0 ∙exp(-τc / (cos (SZA))c) (4-4) 

where: 

• I(SZA) is one of the irradiance components GHI, DNI, or DHI 
• c is the empirical exponent that depends on the radiation component DNI, DHI, or GHI 
• τc is the vertical broadband optical depth of the atmosphere for the radiation component 

of interest 
• SZA is the solar zenith angle. 

The Beer-Lambert equation is a simple relationship because it accounts for monochromatic DNI 
and is impacted only by atmospheric attenuation. On the other hand, DHI and GHI are 
broadband values that contain energy that is scattered by the atmosphere. The empirical exponent 
c is used as an adjustment to compute either GHI or DHI, as explained in Müller et al. (2004). 
Ineichen (2008) developed a simplified (broadband) version of that clear-sky model by 
developing parameterizations to replace radiative transfer model runs, thereby increasing the 
speed of the model. 

4.5.4 McClear Model 
The fast clear-sky broadband model called McClear implements a fully physical model, 
replacing the empirical relations or simpler models used before, such as ESRA. It exploits the 
recent results on aerosol properties and total column content in water vapor and ozone produced 
by the European Copernicus Atmosphere Monitoring Service (CAMS) project. It is based on 
lookup tables precomputed with the radiative transfer model libRadtran (Gschwind et al. 2019). 
McClear irradiances were compared to 1-minute measurements made under clear-sky conditions 
at several Baseline Surface Radiation Network (BSRN) stations representative of various 
climates (Lefèvre et al. 2013). For GHI and DNI, the correlation coefficients range from 0.95–
0.99 and from 0.86–0.99, respectively. The bias ranges from 14–25 W/m² and 49–33 W/m², 
respectively. The root mean square errors range from 20 W/m² (3% of the mean observed 
irradiance) to 36 W/m² (5%) and from 33 W/m² (5%) to 64 W/m² (10%), respectively. 

4.5.5 REST2 Model 
The high-performance REST2 model is based on transmittance parameterizations over two 
distinct spectral bands separated at 0.7 µm. The model’s development and its benchmarking are 
described by Gueymard (2008b). REST2 has been thoroughly validated and compared to other 
irradiance models under varied atmospheric conditions, including extremely high aerosol loads 
(Antonanzas-Torres et al. 2016; Engerer and Mills 2015; Gueymard 2012, 2014; Gueymard and 
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Myers 2008; Gueymard and Ruiz-Arias 2015; Sengupta and Gotseff 2013; Zhong and Kleissl 
2015).  

The model is used in solar-related applications, including the benchmarking of the radiative 
output of the Weather Research and Forecasting (WRF) model (Ruiz-Arias et al. 2012), the 
operational derivation of surface irradiance components using MODIS satellite observations 
(Chen et al. 2014), the improvement in GHI to DNI separation modeling (Vindel et al. 2013), 
and the development of future climate scenarios (Fatichi et al. 2011). REST2 is also being used 
at NREL (Xie et al. 2016) and is integrated into its suite of algorithms that produces the current 
version of the NSRDB (1998–2019). 

4.6 All-Sky Models Used in Operational Models 

4.6.1 Fast All-Sky Radiative Transfer Model 
Radiative transfer models are capable of simulating atmospheric radiation under all-sky 
conditions and have been used in a broad range of applications, such as satellite remote sensing 
or climate studies. Compared to other applications, solar energy has unique requirements from 
radiative transfer models and thus has particular prerequisites in the model design. For instance, 
the study of solar energy demands more efficient simulations of solar irradiance than the 
conventional models used in weather or climate studies, such as the Rapid Radiation Transfer 
Model (RRTM) or its simplified two-stream version for inclusion in general circulation models 
(RRTMG). To provide a new option for efficiently computing solar radiation, NREL developed 
FARMS (Xie et al. 2016) using cloud transmittances and reflectances for direct and diffuse 
radiation computed by RRTM with the 16-stream discrete-ordinates radiative transfer method. 
To reduce the computing burden, the cloud transmittances and reflectances are parameterized as 
functions of SZA, cloud thermodynamic phase, optical thickness, and particle size. The all-sky 
GHI, DHI, and DNI are ultimately computed by coupling the cloud transmittances and 
reflectances with surface albedo and a fast clear-sky radiation model (REST2) to account for 
atmospheric absorption and scattering. 

To understand the accuracy and efficiency of FARMS, GHI was simulated using the cloud 
microphysical and optical properties retrieved from GOES data during 2009–2012 with both 
FARMS and RRTMG and compared to measurements taken at the Southern Great Plains site of 
the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research 
Facility. Results indicate that the accuracy of FARMS is comparable to, if not better than, the 
two-stream approach; however, FARMS is approximately 1000 times more efficient and faster 
because it does not explicitly solve the radiative transfer equation for each individual cloud 
condition. 

Note that FARMS, as well as the conventional radiative transfer models developed for weather 
and climate studies, outputs only broadband irradiance over horizontal surfaces. Recently, 
FARMS expanded its capabilities to incorporate tilted surfaces and spectral distributions (Xie 
and Sengupta 2018; Xie, Sengupta, and Wang 2019).  

4.6.2 All-Sky Models Used in the Recent Heliosat Model 
The CAMS radiation service uses a physical retrieval of cloud parameters and the fast 
parameterized radiative transfer method called Heliosat-4 (Qu et al. 2016). The new Heliosat‐4 
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method computes GHI, DNI, and DHI under all-sky conditions as a broadband aggregation of 
spectrally resolved internal computations. It is a fast but accurate physical model that mimics a 
full radiative transfer model, and it is well suited for geostationary satellite retrievals. The 
method is based on the work of Oumbe et al. (2014), which proved that the surface solar 
irradiance can be approximated by the product of the irradiance under cloudless conditions and a 
modification index depending only on cloud properties and ground albedo. This is why Heliosat-
4 contains two precomputed lookup-table-based models: the McClear model (Lefèvre et al. 
2013; Gschwind et al. 2019) for clear-sky conditions and the McCloud model for cloudy 
conditions. The databases for both models were developed using the libRadtran radiative transfer 
model (Mayer and Kylling 2005). The main inputs to McClear are aerosol properties, total 
column water vapor, and ozone, whereas cloud properties, such as COD, are the main inputs to 
the McCloud part of Heliosat-4. With MSG satellite observations, cloud properties are derived at 
a 15-minute temporal resolution using an adapted APOLLO retrieval scheme. An easy-to-read 
summary can be found in the “User’s Guide to the CAMS Radiation Service”10 (Schroedter-
Homscheidt et. al. 2016). 

4.6.3 Cloud Physical Properties-Surface Insolation under Clear and Cloudy Skies 
Algorithm 

The Cloud Physical Properties (CPP) retrieval algorithms have been developed in EUMETSAT’s 
Satellite Application Facility on Climate Monitoring (CM SAF)11 as well as other European and 
national (The Netherlands) projects (Roebeling et al. 2006; Stengel et al. 2014; Karlsson et al. 
2017a, 2017b; Benas et al. 2017). The basic retrieved parameters are cloud mask, cloud-top 
height, cloud thermodynamic phase, COD, particle effective radius, and water path. From these 
parameters, surface downwelling shortwave radiation is derived, as well as precipitation. 

The CPP algorithm first identifies cloudy and cloud-contaminated pixels using a series of 
thresholds and spatial coherence tests imposed on the measured visible and infrared radiances 
(Roebeling et al. 2006; 2009). Depending on the tests, the sky can be classified as clear, 
contaminated, or overcast. Subsequently, cloud optical properties (COD and effective radius) are 
retrieved by matching observed reflectances at visible (0.6 μm) and near-infrared (1.6 μm) 
wavelengths to simulated reflectances of homogeneous clouds comprising either liquid or ice 
particles. The thermodynamic phase (liquid or ice) is determined as part of this procedure using a 
cloud-top temperature estimate as additional input.  

Building on the retrieval of cloud physical properties, the Surface Insolation under Clear and 
Cloudy Skies (SICCS) algorithm was developed to estimate surface downwelling solar radiation 
using broadband radiative transfer simulations (Deneke et al. 2008; Greuell et al. 2013). GHI, 
DNI, and DHI are retrieved. The cloud properties are the main input for cloudy and cloud-
contaminated (partly cloudy) pixels. Information about atmospheric aerosol from the Monitoring 
Atmospheric Composition and Climate (MACC) is used for cloud-free scenes. Other inputs for 

 
10 See http://www.soda-
pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-
4948-af14-d4c2a94083ac. 
11 See http://www.soda-
pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-
71f6-49ea-b5a6-8ae4557242bd. 
 

http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326238/CAMS72_2015SC1_D72.11.3.1_201612_UserGuide_v2.pdf/ed54f8ec-e19e-4948-af14-d4c2a94083ac
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
http://www.soda-pro.com/documents/10157/326332/CAMS72_2015SC3_D72.1.3.1_2018_UserGuide_v1_201812.pdf/95ca8325-71f6-49ea-b5a6-8ae4557242bd
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the CPP and SICCS algorithms include surface elevation from the ETOPO2v2-2006 database, 
monthly varying integrated atmospheric water vapor from the ECMWF ERA-Interim reanalysis, 
and 8-day varying surface albedo derived from MODIS data. 

4.7 Numerical Weather Prediction-Based Solar Radiation Estimates 
NWP models, run either in reanalysis mode or to generate weather forecasts, can provide GHI 
estimates for long periods of time. The accuracy of such estimates is known to be less than those 
provided by satellite-based models. Significant improvements, however, can be obtained by 
improving both the model physics and the assimilation of various observations. Some commonly 
available models and data sets are described in the following sections. Note that this is not a 
complete and comprehensive list. The goal is only to provide the user with initial information 
related to this potential source of data. 

4.7.1 Reanalysis Models 
ERA5 is a global atmospheric reanalysis that provides data starting in 1979. This data set is 
produced using the ECMWF’s data assimilation system used in the IFS. This system uses four-
dimensional variational analysis and provides analysis data with TOA and both GHI and direct 
horizontal irradiance (all-sky and clear-sky) in hourly time resolution on an approximate 0.25° x 
0.25° grid. More information can be found on the Copernicus ERA5 website.12 

NASA’s MERRA-2 is another global atmospheric reanalysis data set that provides data starting 
in 1980 and comprises TOA and GHI (all-sky and clear-sky). It includes additional data sets 
from those assimilated into the original MERRA data set. The spatial resolution is 0.5° x 0.625°, 
and the temporal resolution is hourly.13 

Finally, the Climate Forecast System Reanalysis from NOAA provides reanalysis data from 
1979. The GHI data are available hourly at a 0.5° resolution.14 

4.7.2 Forecast Models 
Various national meteorological agencies run operational weather forecasts both regionally and 
globally. Some data from these operational models might be available from archives. Some of 
the most popular examples of global data sets are from the ECMWF’s IFS runs and from 
NOAA’s GFS runs. There are various regional model runs by national meteorological agencies 
that produce forecasts for individual countries and regions. Because many data sets now exist, 
this type of data is mentioned without pointing to specific sources. See Chapter 8, Section 8.2.2, 
for additional information and some examples of such data sets. 

Solar forecasting requires improved forecasting of clouds, which is generally a weakness in 
many NWP models, so there have been significant recent efforts to improve cloud and radiation 
modeling, especially within the WRF mesoscale model. This led to the development of the 
WRF-Solar model (Jimenez et al. 2016), which includes significant improvements in cloud 
modeling as well as the capability to compute surface radiation using FARMS. 

 
12 See https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview/.  
13 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  
14 See https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2.  

https://www.ecmwf.int/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
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4.8 Site Adaptation: Merging Measurements and Models 
A major goal of solar resource assessments is to provide high-quality data to evaluate the 
financial viability of solar power plant projects (Moser et al., 2020). This essentially implies that 
accurate data over long time periods are available for conducting these studies. Normally, 
satellite-derived data time series fulfill the requirement for long-term data; however, they could 
be hampered by inherent biases and uncertainty because of the following: 

• The information content, quality, and spatial and temporal resolution of the raw satellite 
data 

• The approximations made by the models converting satellite observations into surface 
solar radiation estimates 

• The uncertainty in ancillary information needed by these models 
• The empirical process used to separate the direct and diffuse components. 

As part of a resource assessment study for a new large solar power plant, ground-based solar 
measurements are conducted for a short period of time (nominally approximately 1 year) and 
used to validate the satellite data. The main goal is to remove some of the uncertainties and bias 
in modeled data sets. This process has been given various names, including “site adaptation,” 
which is used here for simplification. A review paper by Polo et al. (2016) provides a summary 
of the various methods currently used.  

Note, however, that the ground-based irradiance data need to be of high quality, otherwise the 
correction method could degrade the quality of the modeled time series. High-quality ground 
measurements can be achieved only by using well-calibrated, high-quality instruments that have 
been deployed at well-chosen locations using optimal installation methods and regular 
maintenance, per the best practices described in other sections. 

Site-adaptation methods can be separated into two broad categories. The first consists of physical 
methods that attempt to reduce the uncertainty and bias in the data by improving the satellite 
model inputs, such as AOD. The second approach develops statistical correction schemes 
directly comparing the satellite-based irradiance estimates with “unbiased” ground observations 
and uses those functions to correct the satellite-based radiation estimates.  

Various site-adaptation methods have been benchmarked (Polo et al., 2020) within the 
International Energy Agency’s Photovoltaic Power Systems Programme Task 16. In that study, 
11 different site-adaptation techniques have been used to assess improvements in accuracy. Ten 
different data sets covering both satellite-derived and reanalysis solar radiation data were used. 
The effectiveness of these methods is not found to be universal or spatially homogeneous, but in 
general it can be stated that significant improvements can be achieved eventually for most sites 
and data sets. 

4.8.1 Physical Methods 
Because the highest uncertainty in satellite models is in DNI, the primary goal is to reduce errors 
in DNI by improving the quantification of AOD. Methods such as those proposed by Gueymard 
(2011, 2012) demonstrate how accurate AOD data obtained from ground sunphotometric 
measurements can indeed improve DNI. Nevertheless, the scarcity of such high-quality AOD 
observations implies that other sources should be used. Possible sources of AOD with global 
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coverage include retrievals from the MODIS and MISR satellites, data assimilation output from 
CAMS, and NASA’s MERRA-2 data (Gueymard and Yang 2020). In parallel, specific methods 
have been developed by Gueymard and Thevenard (2009) and Ruiz-Arias et al. (2013a, 2013b) 
to correct biases and uncertainties in the satellite- or model-based AOD data using ground 
observations. These adjusted AOD data sets have been shown to improve the satellite-based solar 
radiation estimates at various locations. 

4.8.2 Statistical Methods 
Various statistical methods have been developed to use short-term ground measurements to 
directly correct long-term satellite-based data sets. These bias correction methods range from 
linear methods (Cebecauer and Suri 2010; Vindel et al. 2013; Harmsen et al. 2014; Polo et al. 
2015) to various nonlinear methods, including feature transformation (Schumann et al. 2011), 
polynomial-based corrections (Mieslinger et al. 2014), model output statistics corrections 
(Bender et al. 2011; Gueymard et al. 2012), measure-correlate-predict corrections (Thuman et al. 
2012), and Fourier-decomposition-based corrections (Vernay et al. 2013). Other statistical 
methods include regional fusion methods of ground observations with satellite-based data 
(Journée et al. 2012; Ruiz-Arias et al. 2015) and improvements to the irradiance cumulative 
distribution function (Cebecauer and Suri 2012; Blanc et al. 2012). 

4.9 Summary 
This chapter provided a brief overview of solar radiation modeling methods with a focus on 
satellite-based models. Since the 1980s, both the technology of operational meteorological 
satellites and models to estimate surface radiation from these satellites have improved in their 
resolution and accuracy. With the recent launch of GOES-16, the world is now mostly covered at 
temporal resolutions of 15 minutes or better and spatial resolutions of 1 km. Improvements in 
computational capabilities have also contributed to improving our ability to use increasingly 
sophisticated models that can use higher volumes of satellite and ancillary data sets and 
ultimately deliver products of increasing resolution and accuracy. 

This chapter also contained a short introduction to NWP modeling because improvements in that 
area can contribute to better irradiance estimates around the globe. This chapter has been kept 
deliberately short while providing the interested readers with references for more detailed 
reading. Finally, the following appendix provides short descriptions of some commonly used 
satellite-based data sets.  

Appendix: Currently Available Satellite-Based Data Sets 
This section presents examples of currently available operational models. Only a selection of 
models is presented here. Further public, scientific, and commercial operational models exist and 
might also be of interest for solar resource analyses. See also Chapter 6 for additional details. 

National Solar Radiation Database Physical Solar Model (2019 Update) 
For many years, the National Renewable Energy Laboratory (NREL) has maintained a ground-
based solar radiation data set known as the National Solar Radiation Database (NSRDB). This 
data set included both actual in situ ground measurements and the METeorolgoical-STATistical 
model (METSTAT) model (Maxwell et al. 1997) to convert U.S. National Weather Surface 
ground-based sky observations to solar radiation estimates. The original NSRDB (1961–1990) 
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(NREL 1992) covered the period from 1961–1990 for 239 ground stations in the United States. 
That original version of the NSRDB was subsequently updated to cover an extended period 
(1991–2005), including many more ground stations and making use of satellite-based data to 
correct for some ground-based measurements (NREL 2007).  

In collaboration with the University of Wisconsin and the National Oceanic and Atmospheric 
Administration, NREL produced a physics-based satellite-derived solar radiation data set as part 
of a new gridded NSRDB (1998–2019) (Xie and Sengupta 2018). This gridded NSRDB (1998–
2019) uses the Physical Solar Model (PSM), which produces satellite-based data every 30 
minutes for 4-km-resolution pixels for North American and South America and is freely 
available from the NSRDB website (https://nsrdb.nrel.gov). The data fields include solar 
radiation and meteorological data. With the availability of the next-generation Geostationary 
Operational Environmental Satellites (GOES-16 and GOES-17), the NSRDB is currently 
producing 5-minute data for most of the Northern Hemisphere and 10- to 15-minute data for both 
the Northern Hemisphere and Southern Hemisphere. These data are being produced at a 2-km 
spatial resolution. 

The PSM (currently Version 3) consists of a two-stage scheme that retrieves cloud properties and 
uses those properties in a radiative transfer model to compute surface radiation. In the first stage, 
cloud properties are generated using the Advanced Very High Resolution Radiometer (AVHRR) 
Pathfinder Atmospheres-Extended (PATMOS-x) algorithms (Heidinger et al. 2014). In the 
second stage, global horizontal irradiance (GHI) and diffuse horizontal irradiance (DHI) are 
computed by the Fast All-sky Radiation Model for Solar applications (FARMS) model (Xie et al. 
2016) using these cloud properties as well as additional meteorological parameters as inputs. The 
FARMS model uses the REST2 model (Section 4.5.5) for clear-sky calculations and a fast all-
sky model for cloudy-sky calculations (Section 4.6.1). The aerosol optical depth (AOD) inputs 
required for clear-sky calculations are obtained from the hourly Modern Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-2) aerosol products from the 
National Aeronautics and Space Administration (NASA) after scaling and bias reduction using 
ground AOD measurements from the Aerosol Robotic Network (AERONET). Water vapor, 
temperature, wind speed, relative humidity, and dew point data are obtained from NASA’s 
MERRA-2. 

The NSRDB also provides spectral data sets for 2002 wavelengths. The spectral data are 
produced on demand and use the FARMS-Narrowband Irradiance on Tilted Surface (FARMS-
NIT) model (Xie and Sengupta 2018; Xie et. al. 2019). 

The time-series irradiance data for each pixel are quality-checked to ensure that they are within 
acceptable physical limits, that gaps are filled, and that the Coordinate Universal Time stamp is 
shifted to local standard time. Finally, the GOES-East and GOES-West data sets are blended to 
create a contiguous data set for the period from 1998–2019.  

National Aeronautics and Space Administration/Global Energy and Water Cycle 
Experiment Surface Radiation Budget 
To serve the needs of the World Climate Research Program, Whitlock et al. (1995) developed a 
global Surface Radiation Budget (SRB) data set using cloud information from the International 
Satellite Cloud Climatology Project (ISCCP) C1 data set at a resolution of 250 km by 250 km 

https://nsrdb.nrel.gov/
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(approximately 2.5° x 2.5°) every 3 hours (Schiffer and Rossow 1983; Zhang et al. 2004). 
Information from the ISCCP C1 data set is used as an input into the Pinker and Laszlo (1992) 
model and the Darnell et al. (1988) model. 

The currently available version is the NASA/Global Energy and Water Cycle Experiment SRB 
Release 3.0 data set that contains global 3-hour, daily, monthly/3-hour, and monthly averages of 
surface longwave and shortwave radiative parameters on a 1° x 1° grid. Primary inputs to the 
models include: 

• Visible and infrared radiances and cloud and surface properties inferred from ISCCP 
pixel-level data 

• Temperature and moisture profiles from the GEOS-4 reanalysis product obtained from 
NASA’s Global Modeling and Assimilation Office 

• Column ozone amounts constituted by assimilating various observations. 
The SRB data set is available from multiple sources. The Surface meteorology and Solar Energy 
(SSE) website provided SRB data in a version that was more applicable to renewable energy. 
SSE has recently been replaced by an improved version called POWER.15 SRB data sets are also 
available from the Clouds and the Earth’s Radiant Energy System (CERES) project.16 
Additionally, the Fast Longwave and Shortwave Radiative Fluxes (FLASHFlux) project 
generates real-time SRB data.17 All these projects use global observations from CERES and 
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard polar-orbiting 
satellites. Table 4-2 shows the estimated bias and root-mean-square (RMS) error between the 
original NASA SSE irradiation estimates and measured World Meteorological Organization 
(WMO) Baseline Surface Radiation Network (BSRN) monthly averages of the three usual solar 
radiation components. The NASA POWER accuracy and methodology are documented on its 
website. 

Table 4-2. Regression Analysis of NASA SSE Compared to BSRN Bias and RMS Error for Monthly 
Averaged Values from July 1983–June 2006 

Parameter Region Bias (%) RMS (%) 

GHI Global 
60° poleward 
60° equatorward 

-0.01 
-1.18 
0.29 

10.25 
34.37 

8.71 

DHI Global 
60° poleward 
60° equatorward 

7.49 
11.29 

6.86 

29.34 
54.14 
22.78 

DNI Global 
60° poleward 
60° equatorward 

-4.06 
-15.66 

2.40 

22.73 
33.12 
20.93 

 
15 See https://power.larc.nasa.gov/data-access-viewer/. 
16 See https://asdc.larc.nasa.gov/project/CERES. 
17 See https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux. 

https://power.larc.nasa.gov/data-access-viewer/
https://asdc.larc.nasa.gov/project/CERES
https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux
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German Aerospace Center (DLR)-Irradiance at the Surface Derived from ISCCP 
Cloud Data (ISIS) Model (DLR-ISIS Model) 
Similar to the NASA SSE and POWER data sets, the DLR-ISIS data set18 is a 21-year direct 
normal irradiance (DNI) and GHI data set based on the ISCCP cloud product covering the period 
from July 1983–December 2004. The cloud products are used in a two-stream radiative transfer 
model (Kylling et al. 1995) to evaluate DNI and GHI. The correlated-k method from Kato et al. 
(1999) is used to compute atmospheric absorption in the solar spectrum. Scattering and 
absorption in water clouds are analyzed using the parameterization of Hu and Stamnes (1993); 
ice cloud properties are obtained from Yang et al. (2000) and Key et al. (2002). Fixed effective 
radii of 10 µm and 30 µm are used for water and ice clouds, respectively. The radiative transfer 
algorithm and parameterizations are included in the radiative transfer library libRadtran (Mayer 
and Kylling 2005). 

The complete method for creating the DLR-ISIS data set using the ISCCP cloud products and the 
libRadtran library is outlined in Lohmann et al. (2006). The cloud data used for the derivation of 
the DLR-ISIS data set are taken from the ISCCP FD (global radiative flux data product) input 
data set (Zhang et al. 2004), which is based on ISCCP D1 cloud data. (See the ISCCP website for 
more information about cloud data sets.19) It provides 3-hour cloud observations on a 280-km by 
280-km equal area grid, which is also the spatiotemporal resolution of the DLR-ISIS irradiance 
product. The whole data set comprises 6,596 grid boxes on 72 latitude steps of 2.5°. This grid is 
maintained for the DLR-ISIS data set. 

ISCCP differentiates among 15 cloud types. The classification includes three intervals of optical 
thickness in three cloud levels: low, middle, and high clouds. Low and middle cloud types are 
further divided into water and ice clouds; high clouds are always ice clouds. 

For DLR-ISIS, optical thickness, cloud top pressure, and cloud phase given in the ISCCP data set 
are processed to generate clouds for the radiative transfer calculations. One radiative transfer 
calculation is carried out for each occurring cloud type assuming 100% cloud coverage, plus one 
calculation for clear sky. For the final result, irradiances are weighted with the cloud amount for 
each cloud type and for clear-sky conditions, respectively.  

HelioClim 
The Heliosat-2 method, which is based on Cano et al. (1986) and modified by Rigollier et al. 
(2004), is used to produce the HelioClim databases20 using Meteosat data. The HelioClim 
databases cover Europe, Africa, the Mediterranean Basin, the Atlantic Ocean, and part of the 
Indian Ocean (latitude and longitude between ±66°). The freely available HelioClim-1 database 
established from the Meteosat First Generation (MFG) covers the period from 1985–2005 and 
provides daily values of GHI with a spatial resolution of 25 km. Some statistical comparison 
analyses with ground measurements have been provided by Blanc et al. (2011). 

The two current versions of the HelioClim-3 database (versions 4 and 5) are based on Meteosat 
Second Generation (MSG) and provide, over its field of view, 15-minute surface solar irradiance 

 
18 See http://www.pa.op.dlr.de/ISIS/.  
19 See http://isccp.giss.nasa.gov.  
20 See http://www.soda-is.com/eng/helioclim/heliosat.html. 

http://www.pa.op.dlr.de/ISIS/
http://isccp.giss.nasa.gov/
http://www.soda-is.com/eng/helioclim/heliosat.html
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estimates with a spatial resolution of 3 km at nadir. These databases are available for free for the 
period from February 2004–December 2006. Transvalor, the valorization company of MINES 
ParisTech, commercializes, through their website www.soda-pro.com, the two HelioClim-3 
databases for 2007 onward. Version 4 of the database makes use of the European Solar Radiation 
Atlas (ESRA) clear-sky irradiance model with the climatological database of monthly values of 
Linke turbidity (Remund et al. 2003). This database provides surface solar irradiance estimates 
on a near-real-time basis, with a few minutes of delay after the last image acquisition by MSG 
every 15 minutes. Version 5 of HelioClim-3 makes use of the McClear clear-sky irradiance 
model. 

Ineichen (2016) provided an independent validation of HelioClim-3 versions 4 and 5, using 
irradiance measurements from BSRN stations. 

Solar Energy Mining 
Solar Energy Mining (SOLEMI) is a service from DLR that provides irradiance data 
commercially and for scientific purposes. The data are based on global atmospheric data sets 
(aerosol, water vapor, ozone) from different earth observation sources and climate models as 
well as cloud data from Meteosat. GHI and DNI data sets are available every hour at a 2.5-km 
resolution and cover Europe and Africa (1991–2012) and Asia (1999–2012). SOLEMI basically 
uses the Heliosat-2 method of Rigollier et al. (2004).  

Copernicus Atmosphere Monitoring Service-Radiation Services 
Within the European Commission’s Copernicus program, the European Copernicus Atmosphere 
Monitoring Service (CAMS) provides atmospheric composition as aerosols, water vapor, and 
ozone. By coupling with MSG satellite-based cloud physical parameters in the Heliosat-4 
method, the CAMS radiation service provides clear-sky and all-sky global, direct, diffuse, and 
direct normal irradiation. The service is jointly provided by DLR, MINES ParisTech, and 
Transvalor with help of the SOlar radiation DAta service.21 

In addition to all-sky irradiation, clear-sky (cloudless) irradiation is provided as the CAMS 
McClear service.22 Both services provide time series with temporal resolutions of 1 minute, 15 
minutes, 1 hour, 1 day, or 1 month at the latitude and longitude requested by the user. Time 
series can be accessed by an interactive user interface or automatically in a scripting 
environment. The data records start in 2004 and last until the present time. Data are continuously 
updated and provided with a delay up to 2 days. The coverage is on the global scale for CAMS 
McClear and limited to Europe, Africa, and the Middle East for the CAMS all-sky radiation 
service. An “expert” mode allows access to all used atmospheric input parameters for clouds, 
aerosols, ozone, water vapor, and surface-reflective properties. 

The European program Copernicus provides environmental information to support policymakers, 
public authorities, and both public and commercial users. Data are provided under the 
Copernicus data policy, which includes free availability for any use, including commercial use.  

 
21 See http://www.soda-pro.com/web-services/radiation/cams-radiation-service. 
22 See http://www.soda-pro.com/web-services/radiation/cams-mcclear. 

http://www.soda-pro.com/
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-mcclear
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The preoperational atmosphere service of Copernicus was provided through the EU FP7 projects 
MACC and MACC-II. On January 1, 2016, the MACC Radiation Service was renamed CAMS 
Radiation Service once it went operational within CAMS. 

The user’s guide (Schroedter-Homscheidt et al. 2016) describes the data, methods, and 
operations used to deliver time series of solar radiation available at the ground surface in an 
easy-to-read manner. The Heliosat-4 method is based on the decoupling solution proposed by 
Oumbe et al. (2014) and further described in Qu et al. (2016). The clear-sky McClear model is 
described in Lefèvre et al. (2013) and Gschwind et al. (2019) (see Section 4.5.4). Table 4-3 
shows an overview of the data used in the CAMS Radiation Service. 

Table 4-3. Summary of Data Used in CAMS-RAD 

Variable Data Sources Temporal Resolution Spatial Resolution 

Aerosol properties and type CAMS 3 hours 40 km 

Cloud properties and type APOLLO (DLR) 15 minutes 3–10 km 

Total column content in ozone  CAMS 3 hours 40 km 

Total column content in water vapor  CAMS 3 hours 40 km 

Ground albedo MODIS (prepared 
by MINES/ 
ParisTech) 

Climatology of 
monthly values 

6 km 

Perez/Clean Power Research 
The Perez et al. (2002) method (herein referred to as the Perez State University of New York 
[Perez SUNY] model) evaluates GHI and DNI based on the concept that the atmospheric 
transmittance is directly proportional to the top-of-atmosphere planetary albedo (Schmetz 1989). 
This method is being applied to the GOES satellites and is currently available as the 
SolarAnywhere product from Clean Power Research.23 The concept of using satellite-based 
measurements of radiance assumes that the visible imagery demonstrates cloud cover for high 
levels of brightness and lower levels for clearer conditions (e.g., dark ground cover). Readers are 
referred to Perez et al. (2002) for additional details. 

Vaisala Solar Data Set 
3Tier (now Vaisala) developed a global solar radiation data set for both GHI and DNI. It follows 
the method of Perez et al. (2002) using independently developed algorithms. The revised Vaisala 
algorithms currently use the REST2 clear-sky model and other refinements. This data set is 
available for global locations at a 3-km resolution from 1997.24  

Solargis 
An advanced semi-empirical satellite model for the calculation of global and direct irradiances 
has been developed by Solargis (Cebecauer and Suri 2010) and implemented for the region 

 
23 See www.cleanpower.com.  
24 See 
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20Methodology
%20and%20Validation.pdf. 

http://www.cleanpower.com/
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20Methodology%20and%20Validation.pdf
http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3TIER%20Solar%20Dataset%20Methodology%20and%20Validation.pdf
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covered by the Meteosat, GOES, and Himawari satellites covering land between latitudes 60° N 
and 50° S. The model philosophy is based on the principles of the Heliosat-2 calculation scheme 
(Hammer et al. 2003) and the model by Perez et al. (2002), and it is implemented to 
operationally process satellite data at a full spatial and temporal resolution. Compared to these 
earlier developments, the Solargis model includes various enhancements, such as a downscaling 
capability to take terrain effects and local variability into account. 

EnMetSol Model 
The EnMetSol method25 is a technique for determining the global radiation at ground level by 
using data from a geostationary satellite (Beyer, Costanzo, and Heinemann 1996; Hammer et al. 
2003). It is used in combination with a clear-sky model to evaluate the three usual irradiance 
components. The key parameter of the method is the cloud index, n, which is estimated from the 
satellite measurements and related to the transmissivity of the atmosphere. The method is used 
for MFG, MSG, and GOES data. The EnMetSol method uses the SOLIS model (Müller et al. 
2004) in combination with monthly averages of AOD (Kinne et al. 2005) and water vapor 
(Kalnay et al. 1996) as input parameters to calculate DNI or spectrally resolved solar irradiance. 
The DNI and DHI for all-sky conditions are derived from GHI with a beam-fraction model 
(Hammer et al. 2009; Lorenz 2007). 

The method uses the clear-sky model of Dumortier (1998; see also Fontoynont et al. 1998) with 
Remund’s (2009) Meteonorm high-resolution database for the turbidity input. This model is also 
used to obtain near-real-time and forecasts of global tilted irradiance (GTI) as inputs for 
photovoltaic power prediction.  

KNMI Cloud Physical Properties-Surface Insolation under Clear and Cloudy Skies 
and Solar Radiation Data Sets 
KNMI operates a specific service, MSG-Cloud Physical Properties (CPP), by which near-real-
time and historic satellite observations of cloud properties, surface radiation, and precipitation 
are provided to users. The data are retrieved from the Spinning Enhanced Visible and InfraRed 
Imager (SEVIRI) instrument onboard the EUMETSAT MSG satellite, and they are particularly 
attractive because of their high temporal frequency of 15 minutes combined with a 3-km by 3-
km subsatellite spatial resolution. Retrieval algorithms have been developed in EUMETSAT’s 
Satellite Application Facility on Climate Monitoring (CM SAF) as well as other European and 
national projects. The basic retrieved parameters are cloud mask, cloud-top height, cloud 
thermodynamic phase, COD, particle effective radius, and water path. 

The MSG-SEVIRI Surface Insolation under Clear and Cloudy Skies (SICCS) algorithm derives 
surface solar radiation (direct, diffuse, and global irradiance) using cloud physical properties. 
The SICCS products are available since 2004 at a 15-minute time interval. The CPP-SICCS 
products are provided at the SEVIRI pixels for the MSG full disk. The images and data can be 
obtained from the MSG-CPP website in near real time (http://msgcpp.knmi.nl/). 

Validation results of hourly mean SEVIRI CPP-SICCS retrievals with observations at eight 
European BSRN stations yield median biases of 7 W/m2 (2%), 6 W/m2 (5%), and 1 W/m2 (1%) 
for global, direct, and diffuse irradiance, respectively; and median root mean square errors of 65 

 
25 See https://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/EnMetSol.pdf. 

http://msgcpp.knmi.nl/
https://www.uni-oldenburg.de/fileadmin/user_upload/physik/ag/ehf/enmet/download/EnMetSol.pdf
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W/m2 (18%), 69 W/m2 (39%), and 52 W/m2 (34%) for global, direct, and diffuse irradiance, 
respectively. More detailed validation results are presented by Greuell et al. (2013). 

Satellite Application Facility on Climate Monitoring Surface Radiation Products 
The EUMETSAT’s CM SAF service and data portal provides various satellite-derived data 
records of cloud properties and surface solar radiation. The surface radiation products are part of 
the Cloud, Albedo, and surface RAdiation data set (CLARA) and the SARAH (Surface 
Radiation Data Set – Heliosat) data records. The global CLARA data record is based on polar-
orbiting satellites, whereas the SARAH data record is based on geostationary Meteosat satellites. 
The CM SAF surface radiation data records are well documented and freely available as gridded 
netcdf data files; further information is available here: 
https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiation
_Products_node.html. 

The CM SAF Surface Solar Radiation Data Set - Heliosat Edition 2.1 (SARAH-2.1) includes 30-
minute, daily, and monthly mean data for solar surface irradiance (SIS); two surface direct 
irradiance parameters (SID) (direct horizontal radiation and DNI); sunshine duration (SDU) 
(daily, monthly sum); the spectrally resolved global irradiance (SRI) (monthly mean); and the 
effective cloud albedo (CAL) from 1983–2017 (Pfeifroth et al. 2018). Data are provided with a 
spatial resolution of 0.05° for the full disc of the Meteosat satellites at 0°, i.e., they cover Africa, 
Europe, and parts of South America. An adjusted Heliosat approach and the SPECMAGIC clear-
sky model are used to estimate the irradiance from the geostationary satellite measurements 
(Müller et al. 2012; 2015).  

For the SARAH-2.1 data, the achieved accuracies of the monthly means as determined by 
comparison with reference measurements from the BSRN for the SIS, SID, and DNI parameters 
are 5.2 W/m2, 7.7 W/m2, and 16.4 W/m2, respectively. The daily accuracies are 11.7 W/m² for 
GHI, 17.1 W/m2 for SID, and 33.1 W/m2 for DNI. All values are based on the mean absolute 
difference between the SARAH-2.1 and the BSRN reference data. 

To temporally extend the SARAH-2.1 climate data records, the CM SAF service provides 
consistent surface radiation data (SIS, SID, DNI, SDU) from 2018 onward with a delay of 5 days 
as part of the Interim Climate Data Record SARAH ICDR. 

For the SARAH-E climate data record, satellite measurements from the Meteosat satellites 
located at the Indian Ocean Data Coverage have been used to estimate 60-minute, daily, and 
monthly surface irradiance (global and direct) from 1999–2016 (Amillo et al., 2014). The data 
cover most parts of Asia, Africa, and the western part of Australia and are provided with a spatial 
resolution of 0.05°.  

The CLARA-A2 climate data record provides global data of cloud coverage and various cloud 
properties, surface radiation, and surface albedo from 1982–2015 (soon to be extended to mid-
2019) (Karlsson et al. 2017a, 2017b). The SIS data are derived from the AVHRR measurements 
using a lookup-table approach (Müller et al. 2009) and are provided as daily and monthly means 
with a spatial resolution of 0.25°. The accuracy of the monthly and daily surface irradiance has 
been determined to be 9 W/m2 and 18 W/m2, respectively, by comparison with surface reference 
measurements from the BSRN.  

https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiation_Products_node.html
https://www.cmsaf.eu/EN/Overview/OurProducts/Surface_Radiation_Albedo/Surface_Radiation_Products_node.html
http://dx.doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01
https://wui.cmsaf.eu/safira/action/viewICDRDetails?acronym=SARAH_V002_ICDR
https://doi.org/10.5676/DWD/JECD/SARAH_E/V001_01
http://dx.doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002
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EUMETSAT’s Satellite Application Facility on Climate Monitoring Cloud Property 
Data Sets  
The CM SAF cloud products also include two records: one derived from the polar satellite 
instrument AVHRR and one from Meteosat. Details on the products, retrieval algorithms, and 
quality can be found in the Product User Manuals, the Algorithm Theoretical Basis Documents, 
and the Validation Reports 
(https://www.cmsaf.eu/EN/Overview/OurProducts/CloudProducts/Cloud_Products_node.html). 
The products can be ordered via the web user interface.  

Reuniwatt SICLONE Cloud Property Data Set 
Reuniwatt offers SICLONE (Système d'Information pour l'analyse et la prévision des 
Configurations spatio-temporelLes des Occurrences NuageusEs), a cloud property data set 
containing cloud retrieval properties calculated with the Nowcasting Satellite Application 
Facility (NWCSAF) software (http://reuniwatt.com/en/applications/atmospheric-sciences/). 

A comparison of cloud product databases was presented in 2019 at the European Meteorological 
Society conference: https://hal-mines-paristech.archives-ouvertes.fr/hal-02418087. In that study, 
the Heliosat-4 method was applied to three different cloud properties databases for the estimation 
of the surface downwelling shortwave irradiance. The first is the AVHRR Processing scheme 
Over cLouds, Land, and Ocean (APOLLO) database from the German Aerospace Center (DLR), 
which is implemented in the framework of the CAMS Radiation service. The second is the 
MSG-CPP product issued by the Royal Netherlands Meteorological Institute. The third is the 
CLAAS-2 data set generated by the German DWD in the framework of CM SAF. 

Meteotest's Meteonorm Satellite Irradiation Product 
A model for the calculation of global irradiances was implemented for the region covered by the 
GOES-E, Meteosat, INDOEX, and Himawari satellites covering land between latitudes 65° N 
and 65° S. The model is based on the Heliomont method (Stöckli et al. 2013), which is itself 
based on the Heliosat approach. It is implemented to operationally process satellite data at a full 
spatial and temporal resolution. Data are adapted to ground sites with spatially interpolated linear 
regression functions. The model was further improved by Meteotest (Müller and Remund, 2018, 
Schmutz et al. 2020). 
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Solar irradiance is the most important meteorological input parameter for solar energy, but 
additional meteorological parameters are required for accurate performance analysis as well as 
for optimal plant and grid operation and design. The influence of ambient temperature and wind 
on photovoltaic (PV) efficiency is one example. A discussion of the influence of the different 
meteorological parameters on concentrating solar power (CSP) can be found in Chhatbar and 
Meyer (2011). Also for CSP, a guideline for yield assessment, including the proper selection and 
subsequent impact of key meteorological parameters, has been prepared by the International 
Energy Agency (IEA) Solar Power and Chemical Energy Systems program (Hirsch 2017). For 
PV, a similar study was presented in an IEA Photovoltaic Power Systems Programme report 
(Reise et al. 2018; Bonilla Castro 2020). Recently, parameters such as soiling have gained 
interest. Unless specified otherwise, modeled data for the duration of the long-term radiation 
time series and measured data accompanying the radiation measurements should be available for 
the parameters described in the following sections.  

5.1 Wind 
Wind speed, gust, and wind direction are important for the design and performance of solar 
power plants and electric grids. Wind speed and direction are often understood as the horizontal 
component of the wind velocity. The gust is the maximum wind speed in a given time interval. 
For many applications, an interval of 3 seconds is adequate (WMO 2018).  

Wind loads, and in particular wind gusts, must be considered for the design of solar collectors 
and overhead lines. In tracked solar collectors, high wind gusts or speed might also require 
moving the collectors to their stow position. Cooling effects are strongly related to wind 
(convection)—they increase the efficiency of PV, but they decrease that of thermal collectors 
because their thermal losses are increased. For some specialized applications in CSP testing (e.g., 
convective receiver losses), the three-dimensional wind velocities are also of interest.  

Wind speed and gust can be measured using anemometers. Cup anemometers and propeller 
anemometers consist of a rotor whose frequency of rotation corresponds to the wind velocity. 
Ultrasonic anemometers measure the wind speed, gust, and direction. Many ultrasonic 
anemometers emit an ultrasonic signal over a constant, short distance and measure the time the 
signal needs to reach a detector. Using several measurement paths, the wind direction or the 
three-dimensional wind vector can be derived.  

Mechanical sensors used to determine the wind direction are called wind vanes. The vane’s 
position is read by, e.g., a potentiometer setup. Propeller anemometers often include a wind vane. 
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Recommendations on wind measurements can be found in the Guide to Meteorological 
Instruments and Methods of Observation (WMO 2018), also known as the “CIMO guide” 
(Commission for Instruments and Methods of Observation). In solar power applications, it is 
often impossible to measure the wind velocity solely by following the CIMO guide. Because 
wind measurements at an existing or potential solar power plant site must represent the 
conditions affecting the collectors, measurements might be taken much closer to obstacles 
(buildings, trees, etc.) than required for wind measurements for other purposes. For resource 
assessment, one measurement at 10-m height is considered sufficient, whereas in existing power 
plants with tracked collectors, it is common to monitor the wind at different heights and at more 
than one site in the solar field. 

In addition to measurements, modeled wind data are available based on either historical time 
series or forecasts. Many numerical weather prediction (NWP) models and reanalysis data sets 
provide wind data. Examples are the Modern-Era Retrospective analysis for Research and 
Applications, Version 2 (MERRA-2) from the National Aeronautics and Space Administration 
(Bosilovich Lucchesi, and M. Suarez 2016); the North American Regional Reanalysis (Mesinger 
et al. 2006); the Climate Forecast System Reanalysis from the National Centers for 
Environmental Prediction; and ERA5 from the European Centre for Medium-Range Weather 
Forecasts (see also Chapter 4, Section 4.7.1). A global, albeit limited, validation of the wind 
speed predicted by five reanalyses has shown that their accuracy is highly variable and might not 
be sufficient for demanding applications (Ramon et al. 2019). 

The MERRA-2 reanalysis wind data set (time-averaged two-dimensional data, 
tavg1_2d_slv_Nx) contains the U2M and V2M parameters, which represent wind speeds 2 m 
eastward and 2 m northward, respectively, in m s-1. To obtain the wind speed magnitude, its two 
components are added in quadrature: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = √𝑈𝑈2𝑀𝑀2 + 𝑉𝑉2𝑀𝑀2 (5-1) 

and the wind direction is calculated using:  

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑈𝑈2𝑀𝑀
𝑉𝑉2𝑀𝑀

� (5-2) 

MERRA-2 is on a coarse grid of 0.5o latitude x 0.625o longitude (approximately 60 km x 60 km). 
In general, the spatial and temporal interpolation of reanalysis is coarse compared to satellite-
derived irradiance data; therefore, upscaling methods are used to increase the spatial resolution. 
Sometimes such reanalysis data are available together with solar radiation data sets. The 
upscaled MERRA-2 wind data, for instance, is disseminated through https://nsrdb.nrel.gov, and 
it is also accessible through the National Renewable Energy Laboratory’s (NREL’s) System 
Advisor model (SAM), which is a techno-economic model (Blair et al. 2018). In the latter, wind 
information is a weather input. 

Similar to MERRA2, ERA5 includes east- and northward components (U and V) of wind speed 
on a 0.25 x 0.25° grid spatial resolution. 
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5.2 Ambient Temperature and Relative Humidity 
Air temperature is an important factor needed to calculate the efficiency of solar power plants 
and the maximum load of electric power transmission lines. High temperatures reduce the 
thermal losses of thermal collectors, reduce the efficiency of a thermal plant’s cooling system, 
and reduce the efficiency (of many common types) of PV modules. Transmission lines expand 
with increasing temperature, while their resistance increases. Temperature and temperature 
changes are also relevant for the selection of the appropriate materials to be used in a power 
plant, considering aging processes. Air temperature is often called dry-bulb temperature, and it is 
defined as the temperature of air when shielded from radiation and moisture. 

Relative humidity has an impact on the cooling processes in thermal power plants and on the 
efficiency of thermal receivers, depending on receiver technology (e.g., air receivers). Relative 
humidity is also involved in soiling processes through the formation of dew and the 
accumulation of particles on solar collectors. Moreover, similarly to temperature, relative 
humidity influences aging processes. Relative humidity is the ratio (usually reported in 
percentage) between the observed vapor pressure and the saturation vapor pressure with respect 
to water at the same temperature and pressure (WMO 2018). The saturation vapor pressure is a 
sole function of ambient temperature, and it can be obtained using one of many empirical 
formulae; see Alduchov and Eskridge (1996) and Gueymard (1993). 

Hygrometers and thermometers are used to measure relative humidity and dry-bulb temperature, 
respectively. Today, temperature-dependent resistors, or bandgap sensors, are used in the 
construction of thermometers. Capacity or resistance changes in the sensor material directly 
correspond to changes in humidity, thus providing the basis for measurement. Often, combined 
sensors (hygro-thermometers) are used. The sensors are placed in a radiation shield and can be 
optionally ventilated.  

Higher accuracies can be reached with more sophisticated measurement methods, but these are 
usually not required in solar energy applications. Recommendations on temperature and relative 
humidity measurements can be found in the CIMO guide (WMO 2018). 

As in the case of wind, temperature and relative humidity predictions are included in the output 
of many NWP or reanalysis models. Because the resolution of such data might be too coarse, 
upscaling is typically necessary to match that of the satellite radiation data. To that end, an 
elevation correction on temperature and humidity needs to be applied. As an example, the 
upscaling method used in the production of the National Solar Radiation Database (NSRDB) is 
presented. The correction for temperature uses a lapse rate of 6.5°C per kilometer, according to 
Hemond and Fechner (2015): 

 𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸 ∗ � 6.5
1000

� (5-3) 

where E is the location’s elevation (in meters) relative to the upscaled grid. 

To upscale the relative humidity data, a multistep procedure has been devised for the NSRDB: 
the specific humidity is first interpolated using a combination of nearest neighbor temporal 
interpolation and second-degree inverse distance weighting. Additional steps are taken to 
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estimate relative humidity from the interpolated specific humidity. In particular, the saturation 
vapor pressure is calculated using the method described in Tetens (1930): 

         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 610.79 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢
𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+238.3

∗ 17.2694� (5-4) 

where air temperature is in °C. Then the mixing ratio (w), which is the mass of water vapor per 
mass of dry air, is calculated using the method described in an online document by DeCaria26: 

 𝑤𝑤 = ℎ
(1−ℎ)

  (5-5) 

where h is the 2-m specific humidity in kg kg-1, a MERRA-2 output named QV2M. The next 
step is to estimate the saturation mixing ratio (ws) using a method described by DeCaria27 and 
the National Weather Service28: 

𝑤𝑤𝑤𝑤 = 621.97 ∗
�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

1000� �

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
1000� � 

 . (5-6) 

The surface pressure is also obtained from MERRA-2 and upscaled, as discussed in Section 5.3. 
Finally, relative humidity is calculated from29: 

 𝑅𝑅𝑅𝑅 =  𝑤𝑤
𝑤𝑤𝑤𝑤

. (5-7) 

In general, it is advised to interpolate dew-point and ambient temperatures separately and then 
calculate relative humidity at the place of interest. 

5.3 Atmospheric Pressure 
Atmospheric pressure has a direct effect on some CSP receiver technologies, particularly on the 
power block efficiency, and on cooling processes in thermal plants. Pressure variations influence 
the aging processes of components with sealed volumes; however, pressure data are also used for 
intermediate calculations in solar resource assessments, such as for the accurate calculation of 
the solar position, atmospheric transmittance, dew point, or relative humidity.  

The atmospheric pressure on a given surface is defined as the force per-unit area resulting from the 
weight of the atmosphere aloft (WMO 2018). Atmospheric pressure can be measured with mercury 
barometers, aneroid barometers, hypsometers, or electronic barometers. For solar energy 
applications, electronic barometers are of the most interest. Such barometers use piezoelectric 
materials, an aneroid capsule that changes its form or position depending on pressure, or a 
resonator whose mode of vibration depends on pressure. The displacement of the aneroid capsule 
can be detected using, e.g., capacity or resistance changes. The recommendations for pressure 
measurements made in the CIMO guide (WMO 2018) can be used in solar energy applications.  

 
26 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  
27 See http://snowball.millersville.edu/~adecaria/ESCI241/esci241_lesson06_humidity.pdf.  
28 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  
29 See https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf.  

http://snowball.millersville.edu/%7Eadecaria/ESCI241/esci241_lesson06_humidity.pdf
http://snowball.millersville.edu/%7Eadecaria/ESCI241/esci241_lesson06_humidity.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
https://www.weather.gov/media/epz/wxcalc/mixingRatio.pdf
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As mentioned in the previous section, surface pressure can be obtained from NWP and reanalysis 
data such as MERRA-2. Pressure data might also need to be upscaled. For example, to upscale 
the NSRDB data, a combination of linear temporal interpolation and second-degree inverse 
distance weighting is used, as for relative humidity. An elevation correction is carried out using 
the method described in McIntosh (1978) with elevation E in m: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + �1013.25 ∗ �1 − �1 − 𝐸𝐸
44307.69231

�
5.25328

��.  (5-8) 

5.4 Precipitation 
Precipitation is a relevant quantity in solar energy applications. In the form of rain, precipitation 
can wash dirty collectors, but it can also cause efficiency loss resulting from droplets on exposed 
optical surfaces, especially in concentrating technologies. Rain-induced cooling effects tend to 
increase the efficiency of PV modules, but it reduces that of thermal plants. Moreover, 
precipitation can strongly influence aging processes. Hail could damage solar collectors and 
other plant components. If water enters the insulation material of hot pipes, a prolonged 
efficiency loss occurs until the wet insulation is replaced. The effect of rain on transmission lines 
is less important because its cooling effect and the weight increase mostly compensate each 
other. Ice loads on transmission lines can be of importance, however, and have even resulted in 
catastrophic failures in the recent past, such as during the January 1998 North American ice 
storm (Phillips 2002).  

The presence of snow can have either positive or negative effects on solar energy production. 
Snow in the vicinity of a PV installation or flat-plate thermal collectors could increase 
production because of the higher albedo and increased reflected irradiance (Andrews, Pollard, 
and Pearce 2013; Burnham et al. 2019). In some cases, this increase in reflected irradiance can 
combine with cloud enhancement situations and lead to substantial spikes in incident irradiance 
(Gueymard 2017). In turn, these spikes can have negative impacts on the normal operation of PV 
plants (do Nascimento et al. 2019; Järvelä, Lappalainen, and Valkealahti 2020). On the other 
hand, it is more likely that accumulated snow on collectors will lead to losses, increased wear 
and tear, and even pose a danger because of the increased load on the supporting structure and 
snow sliding down onto underlying areas (Andenæs et al. 2018). In concentrating systems, no 
irradiance gains can exist because only direct radiation is used. 

Rain is often measured with tipping bucket rain gauges. The raindrops are collected by a horizontal 
aperture of known small area, and they fall on a lever. When the droplets trickle on the lever, a 
signal is produced. Such rain gauges can measure only liquid precipitation (in areas where snow is 
common, heated systems must be considered). In parallel, optical pluviometers also exist. The 
lever of the tipping bucket’s rain gauge can be replaced by a laser and an appropriate sensor to 
detect the droplets. Another optical measurement method for all types of precipitation uses an open 
measurement volume, which directly detects the falling raindrops or snowflakes in the air with an 
optical scattering method. A light source emits light, and a sensor detects the scattered light under a 
specific scattering angle. The number of pulses detected by the sensor corresponds to the number 
of particles, and the pulsing pattern helps to determine the size of the droplets and helps to 
distinguish between snow and rain. The CIMO guide (WMO 2018) contains recommendations for 
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precipitation measurements that are of interest in solar applications. Precipitation data can also be 
obtained from NWP or reanalysis predictions but with much less accuracy.  

In relation to precipitation, it is of practical importance to know how long raindrops, and even 
more so snow, can remain on the surface of solar collectors; hence, data about snow cover is of 
interest. Examples of global snow cover products include those from the Interactive Multisensor 
Snow and Ice Mapping System (produced by the U.S. National Ice Center), the Microwave 
Integrated Retrieval System, the National Oceanic and Atmospheric Administration’s 
Microwave Surface and Precipitation Products System, and the JAXA Satellite Monitoring for 
Environmental Studies (produced by the Japan Aerospace Exploration Agency). Products with a 
European focus are available from the CryoLand Copernicus Service. Some global snow 
products have been intercompared recently (Chiu et al. 2020). Other options are reanalysis data 
(e.g., ERA, Copernicus Atmosphere Monitoring Service (CAMS) or MERRA-2) and databases 
with snow depth information from in situ measurements, such as the European Climate 
Assessment & Dataset project.30 More detailed data regarding snow conditions might be also 
available from the national weather service of each country. 

When designing installations for snowy regions, precautions should be followed to optimize the 
solar system’s performance—see Andenæs et al. (2018) for architectural considerations. In 
particular, it is recommended to use frameless PV modules and to ensure that there is enough 
clearance between them and the underlying surface so that snow can slide off easily 
(Bogenrieder 2018; Riley et al. 2019). It is good to increase the tilt angle to facilitate this process 
and to arrange the panels in landscape-oriented layouts to prevent the bypass diodes from 
becoming ineffective during periods of partial shading (Gwamuri et al. 2015). The possible 
benefit of mechanically removing snow accumulations depends on location or climate. In high-
latitude regions characterized by long cloudy winters, snow clearing does not seem to be 
beneficial (Stridh 2012), but it might be of value in sunnier regions where the winter potential 
production is higher (Gwamuri et al. 2015).  

How much loss can be expected because of snow? Existing studies based on a limited number of 
sites have reported annual production losses in the range from 0%–25% and monthly losses as high 
as 100% (Andrews, Pollard, and Pearce 2013; Becker et al. 2008; Sugiura et al. 2003; Townsend 
and Powers 2011). Many models have been developed to estimate the snow loss as a function of 
weather given information about the installation—e.g., Townsend and Powers (2011); Lorenz, 
Heinemann, and Kurz (2012); and Marion et al. (2013). Such results are site-specific, so little is 
known about their general validity; therefore, it is difficult to predict the potential impact of snow 
on the performance of future projects. Because of a lack of general snow-loss models, the major 
PV modeling software products on the market do not support such calculations beyond a simple 
scaling, such as in PVWatts® (Dobos 2014). Ryberg and Freeman (2017), however, incorporated 
the snow model from Marion et al. (2013) into NREL’s SAM. In a 30-year simulation using 
NSRDB data for 239 locations across the United States, the modeled snow loss varied from 0%–
4% in areas with only occasional snow to 15–25% in areas with abundant snow. These limited 
results can be considered today’s best practice for snow-loss modeling. 

 
30 See https://www.ecad.eu/.  

https://www.ecad.eu/
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5.5 Aerosols and Water Vapor 
Some solar energy applications can benefit from the knowledge of spectral aerosol optical depth 
(AOD), single-scattering albedo, asymmetry factor, scattering phase functions, and total column 
water vapor. The latter is often referred to as precipitable water (PW) or integrated water vapor 
(IWV). These parameters can be used to simulate clear-sky broadband or spectral irradiance, as 
explained further in the following sections, and could aid in understanding the spatiotemporal 
variability of the radiation field. Precise knowledge of these variables at any site or instant can be 
used to improve modeled solar radiation data sets and to conduct site adaptations. For solar tower 
power plants, these variables are helpful to model the slant-path radiation attenuation between 
the heliostats and the receiver.  

Sun photometers are typically used to determine these variables. One type of sun photometer 
measures spectral direct normal irradiance (DNI) and the spectral sky radiance at several 
wavelengths (Figure 5-1). Simpler sun photometers sense only the spectral DNI. Both 
instruments consist of one or more photodetectors positioned behind different spectral filters and 
a collimator system. Additional polarization filters are optionally used. Solid-state sensors, such 
as photodiodes, are used for signal detection. For sun photometers that measure only spectral 
DNI, a tracker is required. For sky radiance measurements, more elaborate tracking systems are 
used.  

 
Figure 5-1. AERONET sun photometric station at CIEMAT’s Plataforma Solar de Almería. Photo 

from DLR 

Because these aerosol properties are highly wavelength dependent, it is necessary to make 
measurements at more than a single wavelength. Sun photometers are primarily used to monitor 
aerosol properties, but they normally have a dedicated channel (near 940 nm) to also determine 
PW. 

The direct-sun irradiance measurements are used to derive basic information on aerosols. First, 
the total atmospheric optical depth is calculated. The AOD is then determined by subtracting the 
optical depths of all other atmospheric constituents, such as molecules, water vapor, ozone, or 
nitrogen dioxide. Most optical depths are obtained from separate sources (e.g., satellite retrievals 
or atmospheric models), whereas the water vapor optical depth is derived from the concomitant 
precipitable water measurement. The Ångström exponent can then be derived by fitting the 
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spectral AOD data to the equation describing Ångström’s law. In a separate step, the direct-sun 
measurements can be combined with the concomitant sky radiance measurements to derive the 
aerosol single-scattering albedo, asymmetry factor, aerosol phase function, and other parameters 
using inversion algorithms (NASA 2006).  

Note the two main sun photometer networks in the world: the Aerosol Robotic Network 
(AERONET)31 and SKYNET.32 These networks are important for solar resource assessment 
because of the relatively large number of available observing stations and the applied quality 
assurance and calibration methods.  

The proper determination of aerosol properties (most importantly AOD) and water vapor can be 
done only if the solar disk is not obscured by clouds; therefore, cloud-detection algorithms are 
used to post-process the raw data and generate usable data. With AERONET, for example, the 
spectral DNI measurements are taken in direct-sun triplets. In a triplet, three series of 
measurements are made in rapid succession. In each series, all different filters are used. Cloud 
episodes can be detected by comparing the total optical depth derived from the spectral data of 
the three series to each other and to defined limits (Smirnov et al. 2000; Giles et al. 2019). This 
cloud screening process relies on the higher temporal variability and higher value of cloud 
optical depth compared to AOD.  

Data from measurement networks are available in different levels of quality control. In addition 
to cloud screening, the quality-control procedures involve various other criteria. In AERONET, 
for instance, the best data quality (Level 2) includes manual outlier rejection and correction for 
the change of the calibration constants before and after a measurement period of approximately 1 
year (Holben et al. 2006). Unfortunately, this regular calibration process, as well as other 
experimental difficulties that might arise in the field, result in data breaks of various duration 
(sometimes of many months) at all stations. Despite this important issue, the instrument’s 
calibration is of central importance for overall data accuracy. When available, the highest quality 
data should be used. 

In practice, it is rare that ground measurements of aerosols and water vapor are available for the 
site or period under scrutiny; hence, it is generally necessary to rely on other sources of data. 
Aerosol data can be retrieved from spaceborne observations, such as those sensed by the 
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra and 
Aqua satellites (Bright and Gueymard 2019; Wei et al. 2019). Another source of data is provided 
by reanalysis models, such as CAMS or MERRA-2 (Gueymard and Yang 2020; Kosmopoulos et 
al. 2018). Similarly, water vapor information can be retrieved from the Global Ozone Monitoring 
Experiment–2 (GOME-2), the Scanning Imaging Absorption Spectrometer for Atmospheric 
Cartography (SCIAMACHY), and MODIS spaceborne instruments (Beirle et al. 2018; Bright et 
al. 2018), or from reanalysis models (Mishra 2019). Although AOD and PW are derived mostly 
from polar-orbiting satellites, several retrievals are developed with geostationary satellites, such 
as Himawari-8, the Geostationary Operational Environmental Satellite (GOES), and Meteosat 

 
31 See http://aeronet.gsfc.nasa.gov/new_web/index.html.  
32 See https://www.skynet-isdc.org/.  

http://aeronet.gsfc.nasa.gov/new_web/index.html
https://www.skynet-isdc.org/
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(Kaufman, Tanré, and Boucher 2002). For both aerosol and water vapor, more details about the 
available sources of data and their accuracy are provided by Gueymard (2019b). 

For most solar energy projects, aerosol and water vapor data are required only for radiation 
modeling, i.e., as an intermediate step. No strict recommendation is given to systematically 
collect such modeled or measured data; however, aerosol and water vapor data can help to 
answer questions related to the quality of model-derived irradiance data, especially DNI data. 
Moreover, such data are linked to the solar spectrum, which is of interest in PV applications (see 
section 5.6). Further, aerosol data are related to soiling, circumsolar radiation, and beam 
attenuation between the heliostats and the receiver in solar tower power plants, as discussed next.  

5.6 Spectral Irradiance 
Most sections in this handbook relate to the solar resource in terms of broadband shortwave 
fluxes. Considering the rapid deployment of new solar technologies and the diversification of 
their physical principles, spectral solar irradiance data and models are sometimes necessary to 
address specific aspects of the solar resource in PV, photobiological, and photochemical 
processes; hence, the demand for spectral information has considerably increased in recent 
decades, at least at the level of high-end research and experimentation. New investigations 
(Lindsay et al. 2020) show that neglecting spectral and angular details can lead to significant 
deviations in PV power modeling. 

Like with broadband irradiance, the need for spectral irradiance data can be fulfilled with either 
measurements or models. As mentioned in Section 2.7.5 (Chapter 2), there are also a few 
reference clear-sky spectra that have been standardized for a potentially large number of 
applications—most importantly PV. Because cloudy conditions are highly variable and 
extremely difficult to characterize, no equivalent cloudy-sky reference standard spectrum exists.  

For solar PV applications in particular, reference spectra are particularly useful to, for example, 
(1) obtain a performance rating following the industry’s best practice, such as standard test 
conditions, which prescribe a reference spectrum (Emery et al. 2013; Taylor 2010); (2) 
determine PV spectral mismatch factors when the actual spectral conditions differ from the 
reference spectrum defined by ASTM G173-03 (ASTM 2020a) or the International 
Electrotechnical Commission (IEC) 60904-3 (Braga, do Nascimento, and Rüther 2019; 
Mambrini et al. 2015; Mullejans et al. 2005; Myers and Gueymard 2004); or (3) evaluate how 
well solar simulators agree with a reference spectrum, according to, e.g., IEC 60904-9 (Bliss, 
Betts, and Gottschalg 2010; Meng, Wang, and Zhan 2011; Sarwar et al. 2014). One issue with 
reference spectra is that they are developed for specific atmospheric conditions (Gueymard, 
Myers, and Emery 2002) and thus might not correspond to observable natural conditions at all 
locations of interest or during some periods of the year. To ease this, subordinate standard 
spectra have been proposed (Jessen et al. 2018). These spectra are referenced in ISO standard 
9060:2018 (ISO 2018) to evaluate spectral mismatch factors or spectral errors in radiometers. 

Under natural conditions, the solar spectrum continuously varies in both magnitude and relative 
distribution. It is mostly affected by solar zenith angle (and hence by air mass) and a few variable 
atmospheric constituents, most importantly AOD and PW. An increase in air mass or AOD 
modifies the shape of both direct and global spectra in a way referred to as “red shift” because 
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short wavelengths are attenuated more than longer ones, whereas an increase in PW does the 
opposite and results in a “blue shift.” 

Obtaining outdoor accurate solar spectra for experimental PV research or for the validation of 
solar radiation models requires high-quality measurements obtained with carefully maintained 
spectroradiometers. Two different types of instruments now exist, depending on their detection 
method: (1) scanning monochromators and (2) charge-coupled device (CCD) arrays. In the field, 
CCD-array (solid-state) instruments are preferable because they are faster, lighter, more 
compact, and more reliable than scanning (optomechanical) instruments. The latter are normally 
more accurate; hence, they are typically considered laboratory instruments for indoor 
measurements. Like broadband radiometers, field spectroradiometers can be deployed for 
unattended operation because their casing is weatherproof. They can be mounted on a sun tracker 
and equipped with an appropriate collimating tube to sense the direct normal spectrum. If 
mounted horizontally or on a tilt, they sense the global horizontal or global tilted spectrum, 
respectively. Examples of such mounting options are shown in Figure 5-2. This figure displays a 
group of three instruments because they cover different spectral bands: one has a silicon-based 
detector and covers the typical spectral range from approximately 350–1100 nm, another covers 
the ultraviolet (UV) (300–400 nm), and the last covers near-infrared in the range from 900–1700 
nm. The combination makes it possible to sense the spectrum in an extended range—
approximately 300–1700 nm—which might be necessary to investigate some advanced solar 
cells, for instance. 

   
Figure 5-2. (Left) Three field spectroradiometers mounted on a solar tracker to sense the direct 

normal spectrum. Photo by NREL. (Right) The same three spectroradiometers but mounted 
horizontally to sense the global horizontal spectrum. Photo by Christian Gueymard 

Figure 5-3 displays the direct normal spectra observed (at regular intervals) by a field 
spectroradiometer during a clear summer morning at NREL’s Solar Radiation Research 
Laboratory, in Golden, Colorado, at an elevation of 1829 m. When comparing spectra that are 
observed under contrasting sun positions (high sun versus low sun), the red shift mentioned 
earlier clearly appears. Two strong atmospheric absorption bands—caused by oxygen (near 760 
nm) and water vapor (near 940 nm)—are also clearly visible.  
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Considering the significant costs associated with the deployment, calibration, and maintenance 
of spectroradiometers, only a few solar laboratories in the world can continuously operate such 
instruments for long periods. In most cases, the spectral databases thus collected are considered 
proprietary and can be difficult to obtain. A few exceptions exist, such as the public-domain 
databases offered by NREL33 or the Solar Radiation Monitoring Laboratory of the University of 
Oregon.34 

 
Figure 5-3. Series of DNI spectra measured during a clear summer morning by a field 

spectroradiometer mounted on a sun tracker at NREL. The extraterrestrial spectrum is also 
indicated to exacerbate some important atmospheric absorption bands. 

Because of the lack of measured data, it is convenient to depend on radiative models and obtain 
the solar spectrum at any location and any instant. One early spectral model used in solar 
engineering was SPCTRAL2 (Bird 1984). Its limited resolution, capabilities, and performance 
prompted the development of the Simple Model of the Atmospheric Radiative Transfer of 
Sunshine (SMARTS) model (Gueymard 1995, 2001), which has been thoroughly validated 
(Gueymard 2008, 2019a). It has been used to develop the current reference spectra mentioned in 
Section 2.7.5 (Chapter 2). To operate a spectral radiation model such as SMARTS, precise 
information about atmospheric constituents is necessary, but this is essentially the same 
information as would be needed to obtain only broadband clear-sky irradiances with a simpler 

 
33 See https://midcdmz.nrel.gov/apps/spectra.pl?BMS.  
34 See http://solardat.uoregon.edu/SelectSpectral.html.  

https://midcdmz.nrel.gov/apps/spectra.pl?BMS
http://solardat.uoregon.edu/SelectSpectral.html
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radiation model. The most accessible sources of data, particularly regarding aerosols, are 
discussed in detail by Gueymard (2019b).  

Many spectral radiation models, such as SMARTS, are limited to the prediction of clear-sky 
spectra. Modeling the spectral radiation under all-sky conditions is a challenge because of the 
need to balance the computational burden and errors attributed to the resolution of the spectral 
bands. As a result, high-spectral-resolution models designed to solve spectral radiation based on 
fundamental physicse.g., the line-by-line model (Clough et al. 2005)are often time-
consuming in computing the absorption coefficients of the molecular species in the atmosphere. 
Adding to the complexity of the radiative transfer calculations is the cloud scattering involving 
highly complex interactions between clouds, the over- and underlying atmosphere, and land 
surface. An efficient solution—implemented in the TMYSPEC model (Myers 2012)—is to 
empirically develop regressions that link numerically between long-term observations of 
broadband and spectral solar radiation. More rigorous models based on the solution of the 
radiative transfer equation precompute cloud extinction, reflection, and emission for possible 
cloud conditions and incident and outgoing solar directions and then integrate the results with the 
clear-sky solution (Minnis et al. 2011). The computational efficiency of those models can be 
substantially improved when the precomputations are parameterized by plain functions of cloud 
optical and microphysical properties (Xie, Sengupta, and Dudhia 2016). On the other hand, the 
models can be extended to cover the computation of spectral irradiance—for example, the Fast 
All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces 
(FARMS-NIT) (Xie and Sengupta 2018; Xie, Sengupta, and Wan 2019) precomputed a cloud 
lookup table using the 32-stream DIScrete Ordinates Radiative Transfer (DISORT) model 
(Stamnes et al. 1988) and the parameterization of cloud optical properties developed by Hu and 
Stamnes (1993) and Baum et al. (2011). The cloud bidirectional reflectance distribution function 
(BRDF) and bidirectional transmittance distribution function (BTDF) are stored in a lookup table 
containing data for 2002 wavelengths within the spectral range from 0.28–4.0 µm. Surface 
radiances in the spectral bands are analytically solved from the radiative transfer equation for 
five independent photon paths using the optical thickness of the clear-sky atmosphere provided 
by SMARTS and the cloud BRDF and BTDF.  

Spectral data are required only for selected solar energy projects. For thermal collectors using 
current technology, spectral information does not need to be collected for each individual 
project, and the application of standard spectra suffices. For large PV plants, however, the site-
specific spectral effects should be considered to increase accuracy. This can be done best if 
spectral data are available. Because of the high costs of spectral measurements, the state of the 
art is to introduce the spectral effects via modeling approaches, such as in PV simulation models. 
This procedure is generally empirical and can be improved; hence, related research is required. 
Additionally, spectral irradiance data are useful in related solar technology developments, and 
they are also relevant as an intermediate product to understand specific effects, such as soiling, 
beam attenuation near the ground, or measurement error of various radiometers.  

5.7 Ultraviolet Irradiance  
Although UV constitutes only a small portion of the solar spectrum, the high energy of the 
photons contained at wavelengths less than 400 nm can cause degradation of materials, such as 
those used in the construction of PV modules. More generally, UV irradiance information can be 
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useful in many research-and-development applications, such as PV and CSP material 
degradation, service life prediction, monitoring of lamps in accelerated weathering chambers, 
aging tests in solar simulators, and climate-related research using predictions from appropriate 
models or actual data from weather stations; therefore, high-quality measured and modeled UV 
databases are often required for various locations with differing climatic conditions. Such data 
sources typically provide accurate inputs for these applications.  

The UV spectral ranges of interest are defined in various standards and publications. ASTM 
G113-16 (ASTM 2016) defines UV irradiance for natural weathering applications as the amount 
of electromagnetic radiation greater than 295 nm and less than the visible electromagnetic 
radiation. According to ASTM G177 (ASTM 2020b), the total UV is defined from 280–400 nm, 
and it is subdivided into UV-A (320–400 nm) and UV-B (280–320 nm). The World Health 
Organization (WHO 2020), however, defines these ranges slightly differently, using 315–400 nm 
for UV-A and 280–315 nm for UV-B. Other definitions can be found in the literature or in the 
specifications of UV radiometers. In weathering and durability studies, for instance, radiant UV 
doses are reported in the ranges from 295–400 nm or 295–385 nm (Habte et al. 2019).  

 
Figure 5-4. UV global spectrum measured with a QASUME II spectroradiometer at the PMOD/WRC 

laboratory under high-sun conditions compared with standards ASTM G173 (low UV) and G177 
(high UV) in (left) linear scale and (right) logarithmic scale 

The varying definitions that currently exist introduce confusion, especially because the UV 
irradiance magnitude is highly dependent on wavelength. This is shown in Figure 5-4, where 
actual measurements of spectral global horizontal irradiance (GHI) conducted at the 
Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) 
with a QASUME II spectroradiometer are compared with the reference global tilted irradiance 
spectra promulgated in standards ASTM G173 (for moderate air mass, AM1.5) and G177 (for 
low air mass, AM1.05). As shown, at less than approximately 0.33 µm, the irradiance magnitude 
varies considerably for only small incremental changes in wavelength, hence the need for an 
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excellent wavelength calibration of UV radiometers. A consensus on the range of UV irradiances 
applicable for solar energy conversion technologies is desirable, but it has not yet been reached. 

Some information disseminated by WHO (WHO 2020) about the UV irradiance distribution is 
valuable because of its relevance to solar energy applications. In particular, note that clean snow 
reflects up to approximately 80% of UV irradiance and that more than approximately 90% of UV 
irradiance can be transmitted through thin clouds. Further, WHO emphasizes the relationship 
between site elevation and UV irradiance, stating an increase of 4% in UV irradiance for a 300-
m increase in altitude. Additionally, most of the daily UV dose is said to be received during a 4-
hour period centered on local solar noon. 

As stated in Hülsen and Gröbner (2007), spectroradiometers are the best instruments to measure 
UV irradiance, but they are expensive and require high maintenance. High-end instruments, 
called double monochromators, are less sensitive to stray-light issues than simpler instruments 
based on CCD technology, and they are necessary to sense the UV accurately at less than 
approximately 320 nm, but they are also extremely delicate and expensive; therefore, in most 
cases, only broadband UV radiometers are used in applications that do not demand spectral 
information. All UV radiometers can be calibrated so that they are traceable to one of the 
existing National Metrological Institutes through a calibrated reference lamp. Further, some 
institutions, such as the World Meteorological Organization (WMO), assist in maintaining 
traceability through a commonly accepted calibration methodology and through regular 
intercomparisons using standard reference spectroradiometers maintained and operated by the 
PMOD/WRC. In general, an annual calibration interval is recommended because UV 
radiometers are susceptible to atmospheric constituent changes, degradation and stability issues, 
and other uncertainties (Webb, Gröbner, and Blumthaler 2006).  

There are many types of broadband UV radiometers, as described in Hülsen et al. (2020). There 
are also multiwavelength narrowband filter radiometers that measure solar irradiance at a few 
wavelengths in the UV spectrum, but they require an intricate absolute calibration process that 
involves model simulations (Kerr and Fioletov 2008). 

Measuring UV is difficult because it is prone to high measurement uncertainty resulting from 
factors such as stray-light contamination, calibration error, or directional response deviation. On 
the other hand, measured and/or modeled GHI data of fairly low uncertainty is relatively 
abundant for many locations. Many studies have attempted to parameterize the global UV 
irradiance (UV-B and/or UV-A)—for example, by considering the empirical relationship 
between global UV irradiance and other readily available quantities, such as GHI (Krzyścin 
1996; Fioletov, Kerr, and Wardle 1997; McArthur et al. 1999; Schwander et al. 2002; Habte et 
al. 2019). Some studies have used radiative transfer models (Madronich and Flocke 1997; Evans 
1998; Ricchiazzi and Gautier 1998; Mayer and Kylling 2005; Koepke 2009); whereas others 
have used satellite instruments, such as the Ozone Monitoring Instrument (OMI), to estimate the 
surface UV irradiance (Krotkov et al. 1998; Peeters et al. 1998; Herman et al. 1999; Levelt et al. 
2006; Tanskanen et al. 2006). 

5.8 Soiling 
Soiling can greatly reduce the efficiency of solar collectors because of the induced reduction of 
optical transmission through the collector’s glass cover or entrance window or degradation of the 
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specular reflectance of mirrors. The soiling loss ratio is defined as the ratio between the 
efficiency of the soiled component and that of the clean component for otherwise identical 
conditions. The soiling loss ratio is also called the “soiling ratio” or “cleanliness.” The soiling 
rate describes the rate of change of cleanliness over time. For mirrors, average soiling rates of 
2% per day have been reported at some CSP installations. For flat-plate panels, soiling rates are 
approximately 10 times less for the same conditions because the forward-scattered light still 
contributes to the PV or flat-plate collector yield (Bellmann et al. 2020). Reviews of actual 
soiling effects on solar power plants can be found in Sarver, Al-Qaraghuli, and Kazmerski 
(2013); Ilse et al. (2018); and Maghami et al. (2016). 

The cleanliness can be measured using different techniques. For PV, the short-circuit current of 
soiled reference cells or modules can be compared to that of a clean cell or module. In the 
general case, modules comprise a large number of cells; hence, such a measurement can be 
inaccurate if the module’s surface is not homogeneously soiled. In that configuration, either the 
IV curves of a clean and a soiled module need to be analyzed for an accurate estimation of the 
soiling ratio or the output powers of both modules obtained with maximum power point trackers 
need to be compared. Care must be taken if only one module or cell is used for the estimation of 
the cleanliness by comparing its performance before and after cleaning because the external 
conditions might have changed in the meantime. Moreover, the module or cell temperature can 
be affected by the cleaning process itself. The cleaning of the clean reference glass sheet or 
reference module/cell is of great importance. Automatic cleaning of the reference device is 
complex, whereas manual cleaning is time-consuming. 

 
Figure 5-5. TraCS system for the measurement of mirror soiling. The reflected DNI is compared to 

the incident DNI to obtain the reflectance of the sample mirror. Photo by DLR 

For CSP, one option is to use handheld reflectometers and measure the reflectance of working 
mirrors or sample mirrors before and after cleaning. Alternatively, transmissometers can be used 
to monitor soiling effects on CSP entrance windows. These measurements are time-consuming 
and expensive; therefore, automatic methods have been developed for reflectance (see Figure 5-
5) (Wolfertstetter et al. 2014) and transmittance, respectively. 

Another technique that can be applied to either PV or CSP uses a photodiode behind a glass sheet 
and a detector that senses the scattered radiation. Any soiling on the glass sheet increases the latter. 
The measured signal can be converted into transmittance or reflectance reduction. Further, 
methods based on the analysis of digital pictures of soiled collectors are under development. 
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Figure 5-6. Several cleanliness measurement options for PV and CSP. Photo by DLR 

Some of the aforementioned measurement options are shown in Figure 5-6. For fixed-tilt and 
tracked reference cells, the orientation of the soiling sensors is crucial and should be as close as 
possible to that of the plant itself. Further, the test material must be similar—or ideally 
identical—to that in the power plant; therefore, two different types of reference cells are shown. 
The TraCS device shown in Figure 5-5 is used here to evaluate the cleanliness of four mirrors 
with different antisoiling coatings that are mounted on a rotating plate. The cleanliness thus 
obtained at regular intervals can be used to derive the soiling rate. Effects related to the incidence 
angle, for example, can cause the soiling rate to change strongly throughout the day. Even if the 
component is not cleaned, positive soiling rates (increase of cleanliness) occur, at least 
momentarily, if the time resolution is too high; therefore, soiling rates are reported most 
frequently at a daily resolution. To properly determine the soiling rate, it is important to compare 
data points collected under similar conditions. For instance, the cleanliness measured at noon 
under clear-sky conditions should not be compared to that of the next days if measured under 
cloudy conditions or at a different sun elevation.  

Modeling the soiling rate is a potential solution to strongly reduce the costs associated with 
experimental soiling data and to rapidly provide long-term data sets at many sites. Soiling 
models are mainly based on particle concentration and precipitation, though other meteorological 
data are also required in general. Existing models (Picotti et al. 2018; Micheli and Muller 2017; 
Wolfertstetter et al. 2019) are currently further enhanced and adapted to create soiling maps and 
soiling forecasts based on atmospheric dust transportation models (Micheli, Deceglie, and Muller 
2019). 
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Several systems are commercially available for the measurement of cleanliness and soiling rate. 
They can be used in feasibility studies or for the optimization of plant operation and cleaning 
intervals. Soiling measurements are recommended during the site selection process, especially if 
no soiling data are available from nearby sites, and they continue to be desirable during plant 
operation. Depending on the soiling levels at a PV plant and the peak power of a PV plant, for 
instance, IEC 61724-1 defines a certain number of required soiling measurements. Soiling rate 
results are typically not in the public domain, and only a few data sets are available from data 
portals—e.g., NREL (2020).  

5.9 Circumsolar Radiation 
As discussed in Chapter 2, Section 2.7.1, circumsolar radiation is the scattered radiation received 
from the angular region close to the sun. Most of the circumsolar radiation is included in DNI 
measurements, but typically only a smaller part of it can be used by focusing collectors; 
therefore, information on circumsolar radiation is important for CSP plant yield assessments and 
the design of any type of concentrating power plant. High circumsolar radiation contributions to 
DNI can reduce the efficiency by 10% or more compared to the efficiency for low circumsolar 
radiation levels, even for DNI greater than 200 W/m². Using typical estimates of the average 
circumsolar radiation conditions can lead to errors of several percent in the long-term plant 
yield—e.g., approximately 2% for an exemplary tower plant in the United Arab Emirates 
(Wilbert 2014). 

Different techniques are available to measure circumsolar radiation. For instance, a method 
based on two commercial instruments exists: a camera-based “sun and aureole measurement 
system” and a sun photometer (Gueymard 2010; Wilbert et al. 2013). Another camera-based 
method is also used in Schrott et al. (2014). A different system uses two pyrheliometers with 
contrasting acceptance angles (Wilbert, Pitz-Paal, and Jaus 2013). Kalapatapu et al. (2012) 
presented a modified rotating shadowband irradiometer (RSI) with a slit aperture on top of the 
RSI sensor. Alternatively, circumsolar radiation can be measured with unmodified RSIs (Wilbert 
et al. 2018). The irradiance signal collected during the rotation of the shadowband is analyzed to 
obtain the circumsolar contribution.  

Only camera-based systems can measure the sunshape. This quantity (not to be confused with 
the shape of the sun disk itself) is defined as the normalized radially averaged radiance profile as 
a function of the angular distance from the apparent sun center. The other radiometric systems 
can derive the circumsolar contribution to DNI, which can, in turn, be used to estimate the 
sunshape. Because of the high costs, maintenance and calibration constraints, and analysis 
difficulties, so far the existing camera-based systems have been limited to high-end scientific 
studies. In contrast, RSI- and pyrheliometer-based methods are already commercially available.  

Obtaining long-term information on circumsolar radiation to help power plant project 
developments at an early stage would require substantial modeling effort. A model for the 
influence of thin ice clouds (cirrus), which considerably increase the circumsolar contribution, 
has been presented (Reinhardt et al. 2013). The effect of aerosols can also be modeled (Eissa et 
al. 2018). More recent work using specialized radiative models to evaluate the difference 
between the true and apparent DNI can be found in Räisänen and Lindfors (2019); Sun et al. 
(2020); and Xie et al. (2020); however, so far modeled circumsolar data are not routinely 
available for site assessment.  
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Circumsolar radiation measurements are available for several sites (Bendt and Rabl 1980; 
Noring, Grether, and Hunt 1991; Wilbert 2014; Wilbert, Pitz-Paal, and Guillot 2013). For nearby 
plant projects, or for projects in a similar climate, such measurements might be sufficient for 
plant yield calculations. For other regions and climates, measurement campaigns are 
recommended for site assessment, CSP technology selection, acceptance testing, or optimization 
of plant operation. More research would be necessary, however, before the circumsolar 
contribution can be easily determined by analysts at any location and any instant in their practice 
of solar resource assessments. 

5.10 Beam Attenuation Between Heliostats and Receiver in Tower 
Power Plants 

Among all CSP technologies, tower power plants present a specific challenge because 
atmospheric constituents tend to attenuate the radiation beams along their path from the 
heliostats to the solar receiver on the tower. This attenuation could have a significant impact on 
the efficiency of this technology (Figure 5-7). During clear days, the optical losses over a 1-km 
slant range can be less than approximately 5%. Under hazy, humid conditions, however, more 
than 50% can be lost; hence, attenuation data must be available for the plant design, plant yield 
analysis, and plant operation. Under extreme conditions, high extinction levels could prevent 
towers from being an economically feasible technology option.  

   
Figure 5-7. (Left) CIEMAT’s CESA 1 solar tower on a clear day and (right) on a hazy day. Photo by 

DLR 

Beam attenuation along a slant path can be evaluated with scatterometers or transmissiometers 
(Hanrieder et al. 2015). Camera-based methods also exist (Ballestrín et al. 2018), and at least 
three such options are commercially available. Sengupta and Wagner (2012) and Hanrieder et al. 
(2016, 2020) presented models to derive the attenuation based on only conventional DNI 
measurements. Polo, Ballestrín, and Carra (2016) and Polo et al. (2017) estimated the attenuation 
based on AOD data. Mishra et al. (2020) assessed the sensitivity of three existing attenuation 
models for different atmospheric conditions and have evaluated the feasibility of using satellite 
data as additional inputs.  

The main difficulty resides in the estimation of the vertical profile of the aerosol concentration. 
An overview of measurement and modeling methods and the effect of attenuation on CSP plants 
has been presented (Hanrieder et al. 2017). 
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For prefeasibility and feasibility studies, the existing attenuation models should be applied to 
obtain a first idea of the extinction levels at the site(s) of interest. The extinction varies over 
time, depending on aerosol and humidity conditions; hence, the frequencies of high AOD and 
high humidity values become relevant factors to consider. Under clear conditions, the existing 
models can provide sufficient accuracy. Under hazy conditions with insufficient local 
atmospheric data on AOD or humidity, the uncertainties can be quite high. In that case, 
measurements are recommended for reasonable plant yield estimates. For acceptance tests and 
plant operation, particularly at sites that are frequently impacted by hazy conditions, 
measurements are recommended. 

5.11 Surface Albedo 
The ratio of the total irradiance reflected to the total irradiance received by a surface is called the 
“bihemispherical reflectance,” which is also customarily known as “albedo” (ρ). In contrast, the 
term reflectance is used whenever angular properties are significant—for instance, in the case of 
a surface exhibiting specular properties. More discussion on these definitions appear in 
Gueymard et al. (2019). For solar energy applications, the albedo definition can be 
mathematically expressed as the ratio of the reflected horizontal irradiance (RHI) emanating 
from a surface to the GHI that is incident onto it: 

 ρ = RHI/GHI. (5-9) 

This definition holds for either spectral or broadband fluxes. Only the latter case is discussed 
further here because of its predominant interest in solar applications. The albedo’s physical 
possible values range from 0–1 (sometimes expressed in percentage). In nature, most land areas 
not covered by ice or snow have an albedo in the approximate range from 0.15–0.35. Water 
bodies usually have a low albedo, typically near 0.05. At the other extreme, areas covered with 
fresh snow or clean ice have a very high albedo, which could exceed 0.85. One difficulty is that 
albedo is not merely a true constant surface property but rather a property of the coupled surface-
atmosphere system. In particular, surface albedo is a function of the inherent surface 
characteristics, atmospheric state, and illuminating conditions (Wang et al. 2015). For that 
reason, in general albedo presents a high variability both in space (at scales from a few 
centimeters to hundreds of kilometers) and time (at scales from minutes to daily, seasonal, and 
even interannual); e.g., dry regions with sparse vegetation or spots of snow cover—see, e.g., 
Berg et al. (2020) and Gueymard et al. (2019, 2020).  

Figure 5-8 shows an example of the temporal variability of the albedo of a specific site at 
different timescales. Under clear skies, the diurnal albedo evolution is a function of solar position 
because the reflection process is never purely isotropic (Lambertian) in the real world. 
Conversely, albedo tends to be constant under dense overcast conditions because the direct beam 
component then vanishes and the incident illumination is nearly isotropic. Additionally, daily 
albedo time series vary on a daily, seasonal, and interannual basis.  



Chapter 5-20 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 5-8. (Top) Example of diurnal variation of albedo (30-minute intervals) for (left) cloudy-sky 

conditions and (right) clear conditions derived from the total incident and reflected horizontal 
irradiances, GHI and RHI, measured at the AmeriFlux radiometric station of Walnut Gulch Kendall 

Grasslands in Arizona, United States. (Bottom) Five years of daily mean albedo recorded at the 
same station, illustrating its seasonal and interannual variability 

These variations are typically related to the vegetation’s phenological state, the surface’s 
roughness and wetness, and the presence of snow or ice. Additionally, the albedo’s 
spatiotemporal variability is impacted by both the atmospheric state and the ambient illumination 
conditions through the GHI’s direct and diffuse components. In this respect, it is possible and 
convenient to define two theoretical illumination scenarios. The extreme situation in which there 
is only pure direct-beam illumination—resulting in an ideally black sky dome—corresponds to 
the conceptual case of “directional-hemispherical reflectance,” also known as black-sky albedo 
(BSA). The opposite theoretical situation is that of a “bihemispherical reflectance” under purely 
isotropic diffuse illumination, referred to as white-sky albedo (WSA). Overall, RHI can be 
expressed as a combination of these individual components as: 

 RHI = BSA·DIR + WSA·DHI  (5-10) 

where DIR and DHI denote the direct and diffuse horizontal irradiances, respectively. Assuming 
that the diffuse illumination is purely isotropic, the actual surface albedo—sometimes referred to 
as blue-sky albedo—can be interpolated as a weighted linear combination of its components 
(Lewis and Barnsley 1994; Lucht, Schaaf, and Strahler 2000; Roman et al. 2010): 

 ρ = WSA·K + BSA·(1 – K)  (5-11) 

where K is the diffuse fraction, DHI/GHI. Under overcast conditions, usually only the diffuse 
component is present (K≈1), hence ρ≈WSA. This approximation is convenient and typically used 
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in most solar energy applications because of practical constraints and lack of detailed data on 
BSA. Most often, WSA is considered a constant value over time, such as 0.2. 

Both BSA and WSA can be determined by respective spatial integrations of the surface’s BRDF. 
This is the conceptual foundation to determine the reflectance of the target surface according to 
the geometry of the source-surface-observer directions of radiation. It is a function of wavelength 
(λ) and of the structural and optical properties of the surface. The BRDF attempts to describe the 
behavior of the naturally anisotropic scattering of the solar radiation at the surface-air interface. 
Because of the complexity, diversity, and variability of BRDF distributions, mathematical 
models are used in practice to generate a parametric representation of it (Lucht, Schaaf, and 
Strahler 2000). In addition to the precise determination of the angular reflectance in any 
direction, the BRDF framework is used in a large range of applications related to satellite remote 
sensing. 

In solar energy applications, determining surface albedo is fundamental for various reasons 
(Gueymard et al. 2019). First, radiative transfer models require albedo to account for the multiple 
reflections between the surface and the atmosphere (referred to as the backscattering effect) and 
to ultimately evaluate DHI and GHI (Ruiz-Arias and Gueymard 2018; Sun et al. 2019; Xie, 
Sengupta, and Dudhia 2016). Second, in the frequent case when the incoming solar irradiance is 
modeled based on satellite imagery, the surface albedo also constitutes a key independent 
variable to estimate the dynamic range of cloud reflectance (Perez, Cebecauer, and Suri 2013). 
Third, most solar applications involve planar solar thermal collectors or PV modules that are 
tilted with respect to the horizontal, in which case the ground-reflected irradiance that is incident 
on the tilted plane must be determined. This is particularly important in increasingly popular 
bifacial PV technology, which directly exploits the reflected irradiance as the primary source of 
energy for each module’s rear side. This makes bifacial PV modules markedly more sensitive to 
the albedo magnitude and variations than monofacial modules; hence, reliable information about 
the surface albedo has become important to determine the most suitable PV technology at any 
site, to obtain reliable simulations of the envisioned system’s energy output, and to assess the 
economic feasibility of any solar power project. Difficulties exist because the calculation of the 
reflected irradiance on a tilted surface is generally performed following several simplifying 
assumptions that do not apply in practice (Gueymard et al. 2019; Kamphuis et al. 2020). 

There are three main sources of data on surface albedo: (1) ground measurements using 
albedometers (two pyranometers placed horizontally in opposite up and down directions, 
measuring GHI and RHI, respectively); (2) satellite estimates based on monitoring the reflected 
radiance emanating from the Earth’s surface-atmosphere system; and (3) predictions based on a 
reanalysis model. All present distinct characteristics with advantages and limitations.  

In bifacial PV plants, the in-plane rear-side irradiance (RPOA), must be measured or modeled 
according to IEC 61724-1. Models for the RPOA can use raytracing based on horizontal albedo 
measurements and can optionally also rely on diffuse irradiance measurements. The albedo 
measurement must be as representative for the site as possible. If different albedos are expected 
in a PV plant, several albedo measurements are needed. ISO TR 9901 and IEC 61724-1 provide 
recommendations on albedo measurements. Measuring the albedo on a steep slope is prone to 
error because the GHI measurement made with a pyranometer facing up and mounted 
horizontally then contains part of the radiation measured by the downward-facing pyranometer. 
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This can lead to an underestimation of the albedo. In this situation, the GHI signal should be 
measured such that the radiation reflected by the ground does not affect it. The height of the 
albedo measurement should be high enough to achieve a sufficient measurement area with low 
shading losses but low enough to allow for easy maintenance access; therefore, heights between 
1.5 m and 2 m are recommended if the expected snow heights allow this. In contrast, heights of 
10 m or more are necessary to evaluate the albedo over a larger ground area, with the goal of 
comparing such data with airborne or spaceborne observations, for instance. The area below the 
downward-facing pyranometer should not be shaded, and therefore the instrument’s mounting 
structure should be oriented toward the nearest pole and minimized. Shadows affecting the area 
below the downward-facing pyranometer caused by fences, other instruments, or solar collectors 
should also be minimized to avoid errors. To avoid parasitic specular reflections caused by 
metallic surfaces around, glare screens might also be considered to protect the downward-facing 
pyranometer.  

Various albedo products have been proposed and cover various geographic areas and periods at 
diverse spatiotemporal resolutions. An exhaustive table of openly accessible sources is available 
in Gueymard et al. (2019), along with their main characteristics. In addition, some specialized 
proprietary databases of surface albedo exist and are accessible through service providers.  

When using such databases to evaluate the specific albedo at a site during the design phase of a 
projected solar energy system, some critical questions arise: (1) Will the historical albedo at hand 
be conserved in the future, considering possible changes in the surface characteristics caused by 
the system’s construction (e.g., vegetation removal)? (2) How is the albedo of the specific site 
under scrutiny related to the albedo of the area (e.g., grid cell) for which information is available 
from these databases? The first question must be answered on a case-by-case basis by the 
designer. To address the second question, an analysis of the spatial variability of the albedo over 
the area around the site must be conducted. Analyses show that this spatial variability can be 
high in many cases (Gueymard et al. 2020; Wang et al. 2015), which complicates the matter 
because the use of spatial interpolation or extrapolation over inhomogeneous areas could result 
in incorrect results. When dealing with inhomogeneous surfaces at the small scale—for instance, 
near a solar power plant—methods have been proposed to evaluate the angular effects of 
composite surfaces (Ziar et al. 2019). Finally, methods of various complexity are being 
developed to determine the ground-reflected irradiance that is incident on the rear side of bifacial 
PV modules using either spectral or broadband albedo information (Berrian and Libal 2020; 
Chudinzow et al. 2019; Hansen et al. 2017; Monokroussos et al. 2020; Patel et al. 2019; Russell 
et al. 2017; Sun et al. 2018). 
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6.1 Introduction 
Understanding the long-term spatial and temporal variability of available solar resources is 
fundamental to any assessment of solar energy potential. Information derived from historical 
solar resource data can be used to make energy policy decisions, to select optimum energy 
conversion technologies, to design systems for specific locations, and to operate and maintain 
installed solar energy conversion systems. Historical solar resource data can be the result of in 
situ measurement programs, satellite remote-sensing methods, or meteorological model outputs. 
As described in the previous chapters, each type of data has different information content and 
applicability. 

This chapter summarizes historical solar resource data available around the world. It provides an 
inventory of representative sources of solar radiation data and a summary of important data 
characteristics associated with each data source (e.g., period of record, temporal and spatial 
resolutions, available data elements, and estimated uncertainties). Some data sets discussed in 
this chapter are commercial sources and might not be freely available. Additionally, some 
historical data sets that were listed in previous editions are not retained in this version because 
direct links to download them are not available. We recommend that users refer to previous 
versions of this handbook if they are interested in references to historical archives with no known 
direct source of download. 

The authors and other participants in the International Energy Agency’s Photovoltaic Power 
Systems Programme Task 16 have made every effort to make data products that are as useful, 
robust, and representative as possible; however, the responsibility for applying the data correctly 
resides with the user. A thorough understanding of the data sources, how they are created, and 
their limitations remain vital to proper application of the resource data to analyses and 
subsequent decision making. Discussions and examples of the use of several of these data sets 
for solar energy applications are presented here. Users are encouraged to read the pertinent 
sections of this chapter before applying solar resource and meteorological data. 

Measured solar irradiance data can provide detailed temporal information for a specific site. 
Because solar radiation measurement stations are challenging to operate and because the data 
collected are not used for routine weather forecasts, their density is low, and they have limited 
data collection records. Some examples in the United States are the National Oceanic and 
Atmospheric Administration’s (NOAA’s) Surface Radiation Budget Network (SURFRAD) and 
SOLRAD networks, the University of Oregon network, stations from the U.S. Department of 
Energy’s (DOE) Atmospheric Radiation Measurement (ARM) program, and the National 
Renewable Energy Laboratory (NREL). The total number of ground stations measuring solar 
irradiance in some form and with a wide range of data quality is now more than 3,000 in the 
United States alone. These stations are operated by several interests producing data for varied 
applications (including agriculture). Links to most of those stations are not presented here 
because there is limited confidence in the data quality. For other parts of the world, users are 
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requested to refer to the Baseline Surface Radiation Network (BSRN) network 
(http://bsrn.awi.de/) for high-quality data (e.g., Gueymard and Myers 2008, 2009). Table 6.1 
provides more details on sources of measured or partly measured databases. (The meteorological 
services of various countries might operate many radiometric stations, so Table 6.1 should not be 
considered exhaustive; furthermore, some of these national services do not release their data in 
the public domain.) An increasing number of photovoltaic (PV) and concentrating solar power 
installations now collect high-quality solar radiation data, but those data sets are not publicly 
available, so they are not listed in this chapter.  

Satellite-based observations and mesoscale meteorological models address the needs for 
understanding the spatial variability of solar radiation resources throughout a range of distances. 
Present state-of-the-art models provide estimates for global horizontal irradiance (GHI) and 
direct normal irradiance (DNI) at spatial resolutions of 10 km or less for the United States and 
other parts of the world (see, e.g., CM SAF, the National Solar Radiation Database (NSRDB), 
SolarAnywhere, Meteonorm, PVGIS, and Solargis in Table 6.1). Numerical weather models can 
be used to produce long-term meteorological information when they are used by reanalysis 
models. These reanalysis models have spatially coarser resolutions and have higher uncertainty 
in estimating solar radiation than satellite models or ground measurements. Nevertheless, 
reanalysis data sets such as ERA5, which is the European Center for Medium-Range Weather 
Forecast’s (ECMWF’s) fifth-generation atmospheric reanalysis of the global climate,35 or the 
National Aeronautics and Space Administration’s (NASA’s) Modern Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA-2)36 are useful sources of data because they 
are available globally and for periods longer than 30 years. The rapidly growing needs for more 
accurate solar resource information throughout shorter temporal and smaller spatial scales 
require the user to fully appreciate the characteristics of all available data, especially those from 
historical sources. 

6.2 Solar Resource Data Characteristics 
Characterizing the available solar resources for solar energy applications is important for all 
aspects of realizing the full potential of this utility-scale energy source. Energy policy decisions, 
engineering designs, and system deployment considerations require an accurate understanding of 
the relevant historical solar resource data, the ability to assess the accuracy of current solar 
measurement and modeling techniques, and forecasts of the levels of solar irradiance for various 
temporal and spatial scales. 

Measured solar irradiance data can provide information about the temporal variability at a 
specific site. Practical radiometer designs were developed in the early 1900s to determine the 
sun’s energy output based on high-altitude measurements of DNI made with pyrheliometers 
(Hulstrom 1989). To address the needs of agriculture for monitoring such quantities as 
evapotranspiration, in the 1950s the U.S. Weather Bureau (now National Weather Service) 
deployed a national radiometer network to collect GHI. Since then, both radiometer design and 
data acquisition system performance have advanced considerably. 

 
35 See http://climate.copernicus.eu/products/climate-reanalysis.  
36 See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.  

http://bsrn.awi.de/
http://climate.copernicus.eu/products/climate-reanalysis
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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The earliest records of solar flux measurements were based on thermopile-type pyranometer 
signals recorded and stored on analog strip charts to determine daily amounts of solar flux on a 
horizontal surface. Today, 1-minute (or shorter) digital recordings are available from fast-
response silicon photodiodes and improved thermopile-type pyranometers and pyrheliometers 
that are deployed in regional measurement networks to provide solar energy resource data for a 
variety of applications. 

Historically, there have been four radiometer calibration reference scales: the Ångström scale 
(ÅS; created in 1905), the Smithsonian scale (SS; created in 1913), the international 
pyrheliometric scale (IPS; created in 1956), and the World Radiometric Reference (WRR; 1979). 
The relative differences among these scales can introduce a data bias on the order of 2%. The 
user should be aware of this potential bias in data measured before 1979. A correction is 
necessary to harmonize older data sets to the current scale, according to: 

• WRR = 1.026 (ÅS 1905) 
• WRR = 0.977 (SS 1913) 
• WRR = 1.022 (IPS 1956). 

Modeled solar resource data derived from available surface meteorological observations and 
satellite measurements provide estimates of solar resource potential for locations lacking actual 
measurements. These modeling methods address the needs for improved spatial resolution of the 
resource data. In the United States, the first national effort to model solar resources in the 1970s 
advanced the understanding of solar radiation distributions based on the then-available historical 
measurements at 26 locations to an additional 222 meteorological observing stations with 
detailed records of hourly cloud amounts and other relevant data (see the entry for 
SOLMET/ERSATZ in Table 6.1). Today, satellite-based observations of clouds are used to 
model subhourly surface solar fluxes with a 4-km spatial resolution over North America and part 
of South America (Sengupta et al. 2018). Similar efforts are conducted over other parts of the 
world. 

6.3 Long-Term and Typical Meteorological Data Sets 
Understanding the time frame, or period of record, associated with solar resource data and 
related meteorological information is important for conducting useful analyses. These weather-
driven variables have fluctuations that can range from seconds to years and longer. Long-term 
data can be representative of the climate if the period of record is at least 30 years. By 
convention, the meteorological community has deemed that, according to the 1933 International 
Meteorological Conference in Warsaw, a 30-year interval is sufficient to reflect longer term 
climatic trends and filter the short-term interannual fluctuations and anomalies. Climate 
“normals” are recomputed each decade to address temperature, pressure, precipitation, and other 
surface meteorological variables. Note that the term normal is not equivalent to “average” and 
has a specific meaning in the meteorological and climatological community. Namely, normal 
refers to the 30-year average of an observed parameter that is updated every 10 years (Arguez 
and Vose 2011); thus, the averaging period shifts every 10 years. 

Often, plant project developers require “typical” meteorological information related to a potential 
plant site for prefeasibility studies. A typical meteorological year (TMY) data set provides 
designers and other users with a small-size annual data set that holds 8,760 hourly 
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meteorological values that typify conditions at a specific location throughout a longer period, 
such as the 30-year climatic normal. Different types of TMYs exist. Twelve typical 
meteorological months (TMMs) selected based on their similarity of individual cumulative 
frequency distributions for selected data elements comprise the TMY data set. The longer-term 
distributions are determined for that month using data from the full period of record. The TMMs 
are then concatenated, essentially without modification, to form a single year with a serially 
complete data record. The resulting TMY data set contains measured and/or modeled time series 
of solar radiation and surface meteorological data, though some hourly records might contain 
filled or interpolated data for periods when original observations are missing from the data 
archive. Further, there are many methods used to develop TMMs, as reviewed in Nielsen et al. 
(2017) and García et al. (2020). Novel TMY approaches include a stochastic method (Remund et 
al. 2012), the generation of TMYs at high temporal resolution (Ernst and Gooday 2019), the 
preparation of TMYs specifically tailored for PV applications (Sengupta and Habte 2019), or 
even customized TMYs (Sengupta, Habte, and Freeman 2019).  

TMY data sets are widely used by building designers and others for rough modeling of 
renewable energy conversion systems. Although the TMY data are not designed to provide 
meteorological extremes, they have natural diurnal and seasonal variations and represent a year 
of typical climatic conditions for a location. A TMY data set should not be used to predict 
weather or solar resources for a particular period of time, nor is it an appropriate basis for 
evaluating real-time energy production or detailed power plant design. Rather, a TMY data set 
represents conditions judged to be typical throughout a long period, such as 30 years. Because it 
represents typical rather than extreme conditions, it is not suited for designing systems and their 
components to meet the worst-case weather conditions that could occur at a location. 
Additionally, a TMY is not well suited to assess any probability of energy yield exceedances 
because the natural variability is most likely not fully described with its correct statistical 
distribution. 

6.3.1 Key Considerations 
Applying solar and meteorological data from different sources requires attention to these key 
considerations: 

• Period of record. Influenced by many factors, solar resource data vary yearly, 
seasonally, monthly, weekly, daily, and on timescales down to 1 second or so. In contrast, 
the 30-year averaging period involved in the production of climate normals is updated 
(shifted) every 10 years. For instance, the current climate normals span the period from 
1981–2010, but soon the 1991–2020 normals will become available from meteorological 
services around the world. The normal for one period will not likely be the same as a 
normal for previous or successive periods. Another popular approach is to determine a 
TMY data set from a statistical analysis of multiyear data and eventually derive a single 
year of data that is deemed representative of a longer-term record. Comparative analyses 
must account for any natural differences that result from the periods when the data were 
acquired. 

• Temporal resolution. Solar resource data can range from annually averaged daily 
irradiation, typically used for mapping resource distributions, to 1-second samples of 
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irradiance for operational time-series analyses. Other considerations depend on the data 
type.  

• Units. The unit of irradiance is W/m2. The most common unit of irradiation, or integrated 
power, is kWh/m2. The actual Système International unit for irradiation, J/m2, is rarely 
used anymore. The conversion is 1 kWh/m2 = 3.6 MJ/m2. Note that daily average 
irradiation data produced by or for climatologists are most often incorrectly reported with 
a unit of W/m2. Here, a daily irradiation of 1 W/m2 means an average irradiance of 1 
W/m2 over 24 hours, or 24 Wh/m2. Unfortunately, this can create confusion. A daily 
irradiation should be expressed in kWh/m2, not kWh/m2/day, even though this is a 
frequent mistake. 

• Spatial coverage. The area represented by the data can range from a single station, to a 
sample geographic region, to a global (world) perspective. 

• Spatial resolution. Ground-based measurements are site specific. Current satellite 
remote-sensing estimates are representative of areas typically spanning 3 km by 3 km to 
10 km by 10 km. The “pixel” size of reanalysis data is significantly larger, at least 30 km 
by 30 km with current products. 

• Data elements and sources of the data. The usefulness of solar resource data might 
depend on the available data elements (e.g., DNI or GHI) and whether the data were 
measured, modeled, or produced from a combination of measurement and models. 

• Time stamp. There are three possible time references: Local Apparent Time (LAT, also 
known as Apparent Solar Time), Local Standard Time (LST), and Universal Time (UT). 
The former is rarely used anymore. Global databases tend to use UT, but there is no 
general rule. Moreover, for comparative purposes, it is also important to consider what 
each time stamp specifically refers to. Depending on database, it can be the start, the mid-
point, or the end of the time period (for subdaily data). In climatology, the latter is 
standard. For more details, see Polo et al. (2019). 

• Availability. Data are distributed in the public domain, for purchase, or by license. 
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Table 6-1. Inventory of Solar Resource Data Sources, Presented in Alphabetical Order 

Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

U.S. Department of 
Energy (DOE) 
Atmospheric 

Radiation 
Measurement 

(ARM) Program  

1997–present 

20-second 
instantaneous 
samples and  

1-minute 
averages of  

2-second scans 

Southern Great 
Plains, North Slope of 
Alaska, and tropical 

western Pacific 

32 (active and 
inactive) 

 
11 stations inactive 

(7 at Southern 
Great Plains, 1 at 

North Slope of 
Alaska, and 3 at 
tropical western 

Pacific) 

GHI, DNI, DHI, DIR, UIR, and upwelling 
(reflected) shortwave irradiance. 
Measurements from the Eppley 

Laboratory, Inc., Model PSP (GHI, DHI, 
and upwelling shortwave irradiance), 

Model 8-48 (DHI after 2000), Model NIP 
(DNI), and Model PIR (DIR and UIR) 

radiometers 

DOE, ARM Climate Research 
Facility: http://www.arm.gov 

 
Data sets are labeled SIRS, 

SKYRAD, and GNDRAD. SIRS 
data form the Billings and E13 
locations are also submitted to 

the WRMC-BSRN archives: 
http://www.bsrn.awi.de/. 

Baseline Surface 
Radiation Network 

(BSRN) 
1992–present 

1 minute 
(3 minute for 
SURFRAD 

stations before 
2009) 

Global 

76 (active and 
inactive) 

radiometric 
stations, 17 of 76 

are either 
decommissioned or 

candidates to 
become BSRN 
stations (as of 

4/17/2020) 

The number and type of measurements 
vary by station. Basic radiation 

measurements include GHI, DNI, DHI, 
downwelling infrared irradiance, upwelling 

infrared irradiance, and upwelling 
(reflected) shortwave irradiance. 

Measurements are from radiometers of 
various manufacturers. Synoptic 

meteorological observations, upper air 
measurements, and numerous expanded 

and supporting measurements are 
available. 

The World Radiation Monitoring 
Center (WRMC) provides web-
based and FTP data access: 

http://www.bsrn.awi.de/en/home/  

Australian Bureau 
of Meteorology 

(BOM) 
One-Minute Solar 

Data 

Varies 1 minute Australia 21 radiometric 
stations GHI, DNI, DHI, DIR, longwave, sunshine http://www.bom.gov.au/climate/

data/oneminsolar/stations.shtml  

Copernicus 
Atmospheric 

Monitoring Service 
(CAMS) McClear  

2004–present 

1 minute,  
15 minute,  

1 hour,  
1 day,  

1 month 

Global 

Various input data 
sources with 

different spatial 
resolutions are 

interpolated to the 
location of interest. 

Clear-sky global, direct, direct normal, 
diffuse irradiances; inputs describe 

atmospheric conditions (aerosols, water 
vapor, trace gases, surface reflectivity 

parameters). 

http://www.soda-pro.com/web-
services/radiation/cams-

mcclear  

http://www.arm.gov/
http://www.bsrn.awi.de/
http://www.bsrn.awi.de/en/home/
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

CAMS Radiation 
Service 2004–present 

1 minute,  
15 minute,  

1 hour,  
1 day,  

1 month 

Europe/Africa/Middle 
East/Atlantic 

Ocean/eastern part of 
South America (-66° 

to 66° in both 
latitudes and 
longitudes)  

Various input data 
sources with 

different spatial 
resolutions are 

interpolated to the 
location of interest. 

All-sky GHI, DNI, DIR, DHI, and 
corresponding clear-sky irradiances; 

inputs describe atmospheric conditions 
(aerosols, clouds, water vapor, trace 

gases, surface reflectivity parameters); 
bias-corrected, and non-bias-corrected 

irradiances. 

http://www.soda-pro.com/web-
services/radiation/cams-

radiation-service 

Clean Power 
Research—Solar 

Anywhere 
1998–present 

1 hour, 
30 minute, 
15 minute, 

options for high-
resolution data 

Continental United 
States, 

Hawaii, Canada up to 
60° N, 

South America 
India, parts of the 

Middle East, parts of 
Europe 

1 km 
 
 

2.5 km,  
3 km 

 
 

2.5 km,  
1 km 

GHI, DNI, wind speed, and ambient air 
temperature 

https://www.solaranywhere.com
/solutions/solaranywhere-data/ 

 

Clouds and the 
Earth’s Radiant 
Energy System 

(CERES) SYN1deg 

2000–2019 1 hour 
3 hour Global 1°x1° 

GHI, DHI, and DNI based on physical 
modeling and satellite-based cloud 

observations 
https://ceres.larc.nasa.gov/data/ 

 

CM SAF Cloud, 
Albedo and 

Surface Radiation 
Data Set from 
AVHRR Data, 

Edition 2  
(CLARA-A2) 

1982–2015 Daily, monthly 
averages Global 0.25°x0.25° 

Cloud properties, surface albedo, and 
surface radiation parameters derived 

from the AVHRR sensor onboard polar-
orbiting NOAA and MetOp satellites 

 
GHI 

https://wui.cmsaf.eu/  

CM SAF Surface 
Solar Radiation 

Data Set - Heliosat 
(SARAH), Edition 

2.1 

1983–2017 30 minute, daily, 
monthly 

Europe, Africa, parts 
of South America 0.05° 

Based on MVIRI/SEVIRI instruments 
onboard the Meteosat satellites; 

GHI, DNI, DIR 
https://wui.cmsaf.eu/  

https://www.solaranywhere.com/solutions/solaranywhere-data/
https://www.solaranywhere.com/solutions/solaranywhere-data/
https://ceres.larc.nasa.gov/data/
https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

CM SAF 
SARAH-2 ICDR 2018–present 

15 minute, 
30 minute, daily, 

monthly 

Europe, Africa, parts 
of South America 0.05° 

Based on SEVIRI instruments onboard 
the MSG satellite;  

GHI, DNI, DIR 
https://wui.cmsaf.eu/  

CM SAF Surface 
Solar Radiation 

Data Set -  
Heliosat - East 
(SARAH-E),  
Edition 1.1 

1999–2016 1 hour, daily, 
monthly 

Most parts of Asia, 
Africa; western part 

of Australia 
0.05° 

Based on MVIRI instruments onboard the 
Meteosat IODC satellites 

 
GHI, DNI, DIR 

https://wui.cmsaf.eu/  

Daymet 1980–2019 Daily Continental United 
States 1 km 

GHI, air temperature (minimum and 
maximum), vapor pressure, and snow 

water equivalent  
https://daymet.ornl.gov 

DLR ISIS 
July 1983–
December 

2004 
3 hour Global 280 km by 280 

km 
DNI and GHI from a radiative transfer 
model using cloud and aerosol inputs http://www.pa.op.dlr.de/ISIS/ 

European Center 
for Medium-Range 
Weather Forecasts 

(ECMWF) ERA5 
Reanalysis 

1979–present 1 hour Global 31 km 

Clear-sky and all-sky GHI and DIR 
UV irradiance, 

longwave irradiance, 
surface albedo 

https://cds.climate.copernicus.e
u/cdsapp - !/dataset/reanalysis-

era5-single-levels?tab=form 

EnMetSol 

1995–2019 
(1995–2004 

based on 
Meteosat First 

Generation 
(MFG); 2005–
present based 
on Meteosat 

Second 
Generation  

(MSG) 

30 minute for 
MFG,  

15 minute for 
MSG 

Continental Europe, 
Canary Islands, 

Turkey, and Israel 

2.5 km for MFG,  
1 km for MSG GHI, DHI, and DNI 

University of Oldenburg: 
http://www.energiemeteorologie

.de, 
available on request 

European Solar 
Radiation Atlas 

(ESRA) 
1981–1990 

Monthly and 
annual average 

daily totals 
(kWh/m2) 

Europe 10 km 

GHI, DNI, and DHI, sunshine duration, air 
temperatures, precipitation, water vapor 

pressure, and air pressure at several 
stations 

Les Presses MINES ParisTech: 
http://www.mines-

paristech.fr/Ecole/Culture-
scientifique/Presses-des-

mines/#54. See also 
http://www.soda-pro.com/home. 

https://wui.cmsaf.eu/
https://wui.cmsaf.eu/
https://daymet.ornl.gov/
http://www.pa.op.dlr.de/ISIS/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
http://www.energiemeteorologie.de/
http://www.energiemeteorologie.de/
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.mines-paristech.fr/Ecole/Culture-scientifique/Presses-des-mines/#54
http://www.soda-pro.com/home
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

Green Power Labs: 
SolarSatData 

1995–present 
(Americas) 

 
2000–present 

(Europe) 
 

2005–present 
(Asia, Australia) 

30 minute Americas, Asia, 
Australia, Europe 1–4 km 

GHI, DNI, DHI, GTI, temperature, 
pressure, wind speed, ozone, water 

vapor, total cloud fraction 
 

Irradiance time series for P10, P50, P90, 
and P95 exceedance probabilities 

https://greenpowerlabs.com/ 

HelioClim V2–V5 2004–present 15 minute Europe and Africa 5 km Hourly and daily GHI from satellite 
remote-sensing mode 

MINES ParisTech Armines 
Center for Energy and 

Processes: http://www.soda-
pro.com/home 

Historically Black 
Colleges and 

Universities Solar 
Measurement 

Network 

1985–1996 5 minute 

Southeastern United 
States: Daytona Beach, 

Florida; Savannah, 
Georgia; Itta Bena, 

Mississippi; Elizabeth 
City, North Carolina; 
Orangeburg, South 

Carolina; and Bluefield, 
West Virginia 

Six radiometric 
stations 

GHI, DNI (at three stations), DHI 
(shadowband) from measurements by the 

Eppley Laboratory, Inc., Model PSP 
pyranometers and Model NIP 

pyrheliometers mounted in automatic 
solar trackers  

(LI-COR Model 2020) 

NREL: 
https://www.nrel.gov/grid/solar-
resource/hbcu.html (includes 

quality-assessed monthly data 
files, monthly summary reports, 
and monthly irradiance plots) 

LSA SAF 2005–present 15 minute 

Europe, Africa, parts of 
Asia and South America 

(no geographic 
subsetting offered) 

≈5 km GHI, diffuse fraction, albedo, snow cover, 
vegetation cover 

https://landsaf.ipma.pt/en/data/ca
talogue/  

https://greenpowerlabs.com/
http://www.soda-pro.com/home
http://www.soda-pro.com/home
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://www.nrel.gov/grid/solar-resource/hbcu.html
https://landsaf.ipma.pt/en/data/catalogue/
https://landsaf.ipma.pt/en/data/catalogue/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

Meteonorm 1996–2015 

1-minute and  
1-hour 

 modeled data, 
 

Global 

Data from 8,350 
meteorological 

stations are 
interpolated using 

satellite data to 
establish weather 

data at any 
specified point. 

Ultimate 
resolution: 

0.0625° x 0.0625° 

Measured: monthly means of GHI, 
temperature, humidity, precipitation, wind 
speed and direction, and bright sunshine 
duration. Modeled typical years: 1-minute 

and hourly typical year radiation 
parameters (GHI, DNI, DHI, GTI, 

downwelling infrared, luminance, and 
UVA and UVB), precipitation, and 

humidity parameters (dew point, relative 
humidity, mixing ratio, psychrometric 

temperature). Radiation data from ground 
measurements blended with satellite-

based long-term averages. 

Meteotest 
https://meteonorm.com/ 

Meteonorm 
time series 

2010 
(depending on 

region) – 
current 

1-hour measured 
data Global (62°S to 62°N) 0.0625° x 0.0625° 

Measured time series: 
GHI from satellite, temperature, wind 

speed, humidity, precipitation, and wind 
speed from ERA5T and Swissmetnet 

Meteotest 
https://meteonorm.com/ 

National 
Aeronautics and 

Space 
Administration’s 

(NASA’s) Modern-
Era Retrospective 

Analysis for 
Research and 
Applications, 

Version 2 
(MERRA-2) 

1980–present 1 hour  Global 0.5°x0.625° 

Clear-sky and all-sky GHI, 
detailed information on clouds, 

atmospheric constituents (aerosols, water 
vapor…), weather variables (temperature, 

wind…), and surface albedo 

https://gmao.gsfc.nasa.gov/rean
alysis/MERRA-2/data_access/ 

National 
Aeronautics and 

Space 
Administration’s 

(NASA’s) 
Prediction of 

Worldwide Energy 
Resources 
(POWER) 

July 1983–
June 2005 

Monthly and 
annual average 

daily totals 
(kWh/m2) 

Global 0.5x0.5° 

GHI, DNI, and DHI from a satellite 
remote-sensing model. Also available: 

estimates of clear-sky GHI, DNI, and DHI 
and tilted surface irradiance, temperature, 

pressure, humidity, precipitation, and 
wind speed 

https://power.larc.nasa.gov/ 

https://meteonorm.com/
https://meteonorm.com/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://power.larc.nasa.gov/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

National Center for 
Environmental 

Protection (NCEP)/ 
National Center for 

Atmospheric 
Research Global 

Reanalysis 
Products  

1948–current 6 hour (W/m2) Global 2.5° 
(nominal) 

GHI and more than 80 variables, 
including geopotential height, 

temperature, relative humidity, and U and 
V wind components, in several coordinate 

systems, such as a 17-pressure-level 
stack on 2.5 x 2.5° grids, 28 sigma-level 
stacks on 192 x 94 Gaussian grids, and 
11 isentropic-level stacks on a 2.5 x 2.5° 

grid 

University Center for 
Atmospheric Research, 

Computational and Information 
Systems Laboratory Research 

Data Archive: 
http://rda.ucar.edu/datasets/ds0

90.0/ 

National Oceanic 
and Atmospheric 
Administration’s 
(NOAA) Global 

Monitoring 
Laboratory 

(GML)/Earth 
System Research 
Laboratory (ESRL) 
Baseline Network 

Varies 1 minute Global 

Five stations: 
Hawaii, Alaska, 

California, 
Greenland, 

American Samoa 

GHI, DNI, DHI, downwelling infrared 
irradiance 

https://esrl.noaa.gov/gmd/dv/sit
e/index.php?program=grad  

National Oceanic 
and Atmospheric 
Administration’s 

(NOAA) SOLRAD 
Network 

1995–present 
1 minute 

(15 minute 
before 2001) 

Continental United 
States 

Nine stations: New 
Mexico, North 

Dakota, California, 
Wisconsin, 
Tennessee, 

Washington, Utah, 
Virginia, and Florida 

GHI, DNI, DHI, and global UVB 

NOAA, Earth Systems 
Research Laboratory, Global 
Monitoring Division, Boulder, 

Colorado: 
https://www.esrl.noaa.gov/gmd/

grad/solrad/index.html 
 

Data available from: 
ftp://aftp.cmdl.noaa.gov/data/ra

diation/solrad  

National Oceanic 
and Atmospheric 
Administration’s 
(NOAA) Surface 
Radiation Budget 

Network 
(SURFRAD) 

1993–present 

Data are 
reported as  

3-minute 
averages of  
1-second 

samples before 
January 1, 2009, 

and  
1-minute 

averages on and 
after January 1, 

2009. 

Continental United 
States 

Seven permanent 
stations: 
Montana, 

Colorado, Illinois, 
Mississippi, 

Pennsylvania, 
Nevada, and 
South Dakota 

 
Four temporary 

stations: 
Arizona, 

Colorado, 
Oregon, and 

Vermont 

GHI, DNI, DHI, downwelling infrared 
irradiance, upwelling infrared irradiance, 

and upwelling (reflected) shortwave 
irradiance. Photosynthetically active 

radiation, solar net radiation, infrared net 
radiation, air temperature, relative 

humidity, wind speed and direction (10-m 
AGL), and all-sky images 

NOAA, Earth Systems Research 
Laboratory, Global Monitoring 
Division, in Boulder, Colorado: 

https://www.esrl.noaa.gov/gmd/gr
ad/surfrad/sitepage.html 

 
Data available from: 

ftp://aftp.cmdl.noaa.gov/data/radi
ation/surfrad/ 

 
SURFRAD data from permanent 
stations are also submitted to the 

BSRN archives: 
www.bsrn.awi.de/.  

http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/datasets/ds090.0/
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://esrl.noaa.gov/gmd/dv/site/index.php?program=grad
https://www.esrl.noaa.gov/gmd/grad/solrad/index.html
https://www.esrl.noaa.gov/gmd/grad/solrad/index.html
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
ftp://aftp.cmdl.noaa.gov/data/radiation/solrad
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
http://www.bsrn.awi.de/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

National 
Renewable Energy 
Laboratory (NREL) 

Solar Radiation 
Research 

Laboratory (SRRL) 
Measurement and 

Instrumentation 
Data Center 

(MIDC) 

1981–present 

5 minute 
(beginning July 

15, 1981),  
1 minute 

(beginning 
January 13, 

1999) 

Golden, Colorado One radiometric 
station 

GHI, DNI, DHI (from shadowband and 
tracking disk), global on tilted surfaces, 
reflected solar irradiance, UV, infrared 

(upwelling and downwelling), photometric 
and spectral radiometers, sky imagery, 
and surface meteorological conditions 

(temperature, relative humidity, 
barometric pressure, precipitation, snow 
cover, and wind speed and direction at 

multiple levels) 

http://www.nrel.gov/midc/srrl_b
ms/ 

National Solar 
Radiation 

Database (NSRDB) 
1961–1990 

1961–1990 1 hour  
United States and 

territories 

239 stations (56 
stations have 

some radiation 
measurements) 

Hourly GHI, DNI, DHI, ETR, direct normal 
ETR, total sky cover, opaque sky cover, 

ceiling height, dry-bulb temperature, dew-
point temperature, relative humidity, 

atmospheric pressure, horizontal visibility, 
wind speed, wind direction, present 

weather, AOD, total precipitable water, 
snow depth, and number of days since 

last snowfall 

NREL: 
https://nsrdb.nrel.gov/data-

sets/archives.html 

National Solar 
Radiation 

Database (NSRDB) 
1991–2005 

1991–2005 1 hour  United States 

1,454 locations 
and 10-km by 10-
km grid (1998–

2005) 

Computed or modeled data: ETR on 
surfaces horizontal and normal to the 
sun, GHI, DNI, and DHI. Measured or 

observed data: total sky cover, opaque 
sky cover, dry-bulb temperature, dew-
point temperature, relative humidity, 

station pressure, wind speed and 
direction, horizontal visibility, ceiling 

height, precipitable water, AOD, surface 
albedo, and precipitation 

NSRDB:  
https://www.ncdc.noaa.gov/data

-access/land-based-station-
data/land-based-datasets/solar-

radiation 
Data available from: 

ftp://ftp.ncdc.noaa.gov/pub/data
/nsrdb-solar/  

and https://nsrdb.nrel.gov/data-
sets/archives.html. 

http://www.nrel.gov/midc/srrl_bms/
http://www.nrel.gov/midc/srrl_bms/
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-radiation
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

National Solar 
Radiation 

Database (NSRDB) 
1991–2010 

1991–2010 1 hour  United States 

1,454 locations 
and 10-km by 10-
km grid (1998–

2009) 

Computed or modeled data: ETR on 
surfaces horizontal and normal to the 
sun, GHI, DNI, and DHI. Measured or 

observed data: total sky cover, opaque 
sky cover, dry-bulb temperature, dew-
point temperature, relative humidity, 

station pressure, wind speed and 
direction, horizontal visibility, ceiling 

height, precipitable water, AOD, surface 
albedo, and precipitation 

NSRDB User’s Manual: 
http://www.nrel.gov/docs/fy12os

ti/54824.pdf 
 

Data available upon request 
from NREL. 

National Solar 
Radiation 

Database (NSRDB) 

1998–2019 
(updated 
annually) 

5 minute from 
2018 

 
Half-hourly 

Southern Canada, 
United States, and 

parts of South America 
(longitude:  

-25° E to -175° W, 
latitude:  

-21° S to 60° N). 
India 2000–2014 

4 km; 
2 km from 2018 

GHI, DNI, DHI, clear-sky DHI, clear-sky 
DNI, clear-sky GHI, cloud type, dew point, 

surface air temperature, surface 
pressure, surface relative humidity, solar 

zenith angle, total precipitable water, 
wind direction, wind speed, surface 

albedo 

https://nsrdb.nrel.gov 

European 
Organisation for the 

Exploitation of 
Meteorological 

Satellites 
(EUMETSAT) 

Ocean and Sea Ice 
Satellite Application 
Facility (OSI-SAF) 

2001–present 1 hour  
Africa, Americas, 

Europe, western Asia 0.05°x0.05° GHI, longwave infrared irradiance 
http://www.osi-

saf.org/?q=content/radiative-
fluxes-products 

Pacific Northwest 
Solar Radiation 
Data Network 

1975–present 

1 minute to 1 
hour, 

 depending on 
station and date 

Oregon, Idaho, 
Washington, Utah, 
Wyoming, Montana 

39 stations 

Varies by site and date—GHI, DNI, DHI, 
GTI, spectral irradiance, surface 

meteorological data (temperature, relative 
humidity barometric pressure, 

precipitation, precipitable water vapor), 
PV output 

http://solardat.uoregon.edu/Sola
rData.html 

http://www.nrel.gov/docs/fy12osti/54824.pdf
http://www.nrel.gov/docs/fy12osti/54824.pdf
https://nsrdb.nrel.gov/
http://www.osi-saf.org/?q=content/radiative-fluxes-products
http://www.osi-saf.org/?q=content/radiative-fluxes-products
http://www.osi-saf.org/?q=content/radiative-fluxes-products
http://solardat.uoregon.edu/SolarData.html
http://solardat.uoregon.edu/SolarData.html
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

Photovoltaic 
Geographical 

Information System 
(PVGIS) 

2005–2016 1 hour 
 

Europe, Africa and 
most parts of Asia 

and America 

1-km aggregated 
to 3 arc-minutes  

(~5 km) 
 

GHI, DNI, DHI, and GTI, based on the 
CM-SAF, COSMO, NREL, and ECMWF 
databases, optional terrain shadowing. 

Also TMY data sets 

European Commission Joint 
Research Centre, Directorate 

for Energy, Transport and 
Climate; Energy Efficiency and 

Renewables Unit: 
https://ec.europa.eu/jrc/en/pvgis 

Reuniwatt—SunSat 

2004 
(depending on 

region)–
present 

10/15 minute,  
1 hour 

 

Worldwide between 
latitudes 60° N and 

60° S 

500 m to  
3 km depending 

on location 

GHI, DNI, DHI, BHI, GTI and 
corresponding clear-sky irradiance, cloud 

index, meteorological conditions 
(temperature, relative humidity, wind 

speed, pressure, aerosol optical depth, 
precipitable water, total column water 

vapor, etc.) 

https://reuniwatt.com 

Southern African 
Universities 
Radiometric 

Network 
(SAURAN) 

Varies 1 minute Botswana, Namibia, 
and South Africa 

23 radiometric 
stations GHI, DNI, and DHI; meteorological data https://sauran.ac.za/  

Solar Data 
Warehouse 

Varies from 5–
25 years ago 
to the present 

1 hour 
 and daily 

Continental United 
States 

More than 3,000 
radiometric 

stations 
GHI http://www.solardatawarehouse.

net 

Solar Energy and 
Meteorological 

Research Training 
Sites 

1979–1983 1 minute 

Fairbanks, Alaska; 
Atlanta, Georgia; 

Albany, New York; 
San Antonio, Texas 

Four radiometric 
stations 

GHI, DNI, and DHI; GTI on various 
surfaces, infrared irradiances, UV and other 

spectral irradiance (varies), and surface 
meteorological conditions (temperature, 

relative humidity, pressure, visibility, wind 
speed, and direction at 10 m, precipitation, 

etc.) 

NREL: 
https://www.nrel.gov/grid/solar-

resource/semrts.html 

Solcast 2007–present 

1, 5, 10, 15, or 
30 minute and  

1 hour 
 

Global, except polar 
areas 

1–2 km cloud 
index, scaled to 

150 m using DEM 

GHI, DNI, EBH, DIF/DHI, GTI, cloud 
opacity, solar zenith angle, solar azimuth 

angle, temperature, wind speed, wind 
direction, relative humidity, surface 

pressure, precipitable water, snow depth, 
dew point, albedo. 

Data available as time series, typical year 
with P50, P75, P90, P95, or Pxx 

exceedance probabilities, and monthly 
and annual averages 

https://solcast.com/ 

https://ec.europa.eu/jrc/en/pvgis
https://reuniwatt.com/
https://sauran.ac.za/
http://www.solardatawarehouse.net/
http://www.solardatawarehouse.net/
https://www.nrel.gov/grid/solar-resource/semrts.html
https://www.nrel.gov/grid/solar-resource/semrts.html
https://solcast.com/
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

Solargis 

1994, 1999, 
2007–present 
(depends on 

satellite region) 

1, 5, 10, 15, 30 
and 60 minute 

Global, land and 
coastal waters, 

between latitudes 65° 
N and 55° S 

Solar parameters 
at 2 to 3 km (at 

the Equator) 
enhanced to ~90 
m and ~250 m 
using SRTM-3 
DEM; Meteo 

parameters at 1 
km and coarser 

DNI, GHI, DHI (DIF), GTI, UVA, UVB, air 
temperature, dew point and wet-bulb 

temperature, wind speed and direction, 
wind gust, relative humidity, air pressure, 

ground albedo, precipitable water, 
precipitation, snow depth, snow fall rate. 
Accessible as time series, TMY Pxx and 

long-term statistics 

https://solargis.com  

Solar Energy 
Mining (SOLEMI) 1991–present 30 minute 

Europe, Africa, South 
America, Western 

Asia, Western 
Australia 

2.5 km GHI, DNI 

DLR: 
http://www.dlr.de/tt/en/desktopd

efault.aspx/tabid-
2885/4422_read-6581/ 

 
Data available upon request. 

TMY 98-19 1998–2019 1 hour  

Southern Canada, 
United States, and parts 

of South America 
(longitude:  

-25° E to -175° W, 
latitude: -20° S to 60° N) 

4 km 
GHI, DNI, DHI, cloud type, dew point, 

surface air temperature, surface 
pressure, wind direction, wind speed 

https://nsrdb.nrel.gov 

TMY2 

One year 
representative 
of the 1961–
1990 NSRDB 
data period 

1 hour United States and 
territories 

239 stations 
representing the 

1961–1990 NSRDB 
Same as NSRDB 1961–1991 

NREL: 
https://nsrdb.nrel.gov/data-

sets/archives.html  

TMY3 1991–2005 1 hour United States and 
territories 1,020 locations 

Computed or modeled data: ETR on 
surfaces horizontal and normal to the sun, 
GHI and illuminance, DNI and illuminance, 

DHI and illuminance, zenith luminance. 
Measured or observed data: total sky cover, 

opaque sky cover, dry-bulb temperature, 
dew-point temperature, relative humidity, 

station pressure, wind speed and direction, 
horizontal visibility, ceiling height, 

precipitable water, AOD, surface albedo, 
and precipitation 

NREL: 
https://nsrdb.nrel.gov/data-

sets/archives.html 

https://solargis.com/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
http://www.dlr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_read-6581/
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://nsrdb.nrel.gov/data-sets/archives.html
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Database Period of 
Record 

Temporal 
Resolution 

Spatial  
Coverage 

Spatial 
Resolution 

Data Elements  
and Sources Availability 

Vaisala (formerly 
3Tier)  

Solar Time Series 

January 1997–
present 

Approx.  
30-minute 

instantaneous 
and  

1-hour averages 

Global 2 arc-min (~3 km) 
GHI, DNI, and DHI from model estimates 
based on satellite remote-sensing input 

data 

https://www.vaisala.com/en/digit
al-and-data-

services/renewable-energy  

Vortex 
 

GOES 
SARAH 

 
 

SARAH-E  
 

Himawari 

Two periods: 
2010–present; 

1995–2015 
 
 
 

1999–2015; 
 

2012–2018 

1 hour 
 
 
 
 
 

1 hour 

Americas 
Europe, Africa, 

Middle East-East 
Europe-West 

 
 

 Asia 
 

Asia-Oceania  

4–5 km 
 
 

4–5 km 
 
 

4–5 km 
 

2 km 

Only GHI, DNI derived from GHI 
 

GHI, DNI, DHI 
 
 
 

GHI, DNI, DHI 
 

GHI, DNI, DHI 

https://vortexfdc.com/ 

Western Energy 
Supply and 

Transmission 
(WEST) Associates 

Solar Monitoring 
Network 

1976–1980 15 minute 

Arizona, California, 
Colorado, Nevada, 
New Mexico, and 

Wyoming 

52 radiometric 
stations 

GHI, DNI, and dry-bulb temperature 
measured with pyranometers (Eppley 
Black and White, Eppley PSP, and the 

Spectrolab Spectrosun SR75) and 
pyrheliometers (Eppley NIP) in automatic 

solar trackers 

NREL: 
https://www.nrel.gov/grid/solar-

resource/west-manual.html 

World 
Meteorological 
Organization 
(WMO) World 
Radiation Data 
Center (WRDC) 

1964–present 

Daily totals with 
some  
1-hour 

measurements at 
a few sites 

Global 
More than 1,000 

radiometric 
stations 

Primarily daily total GHI, radiation 
balance, and sunshine duration, but 

some DHI and DNI. Some hourly 
measurements are available from a few 

sites. 

http://wrdc.mgo.rssi.ru 

 

https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://www.vaisala.com/en/digital-and-data-services/renewable-energy
https://vortexfdc.com/
https://www.nrel.gov/grid/solar-resource/west-manual.html
https://www.nrel.gov/grid/solar-resource/west-manual.html
http://wrdc.mgo.rssi.ru/
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7.1 Introduction 
A clear statement of uncertainty should accompany any comprehensive measured or modeled 
solar radiation data set to provide the necessary context to understand the reliability of the 
analysis performed using the data.  

For example, a full characterization of uncertainty provides a basis to assess confidence in the 
predicted output of a planned solar conversion system and is thus a key factor when determining 
the bankability of the project. Uncertainty is a way to specify the confidence in the data. It is 
important to determine the uncertainty using a standard methodology to provide authoritative 
results that can be relied on for analysis and comparisons. The Guide to the Expression of 
Uncertainty in Measurements (GUM) (ISO 2008) is an example of how to determine the 
uncertainty in measurements. GUM has been formalized by several organizations, including the 
International Bureau of Weights and Measurements (French acronym: BIPM), and published by 
the International Standards Organization (ISO). 

This chapter discusses the uncertainties associated with the measured or modeled solar resource 
data along with the limits on the validation of physical or empirical models that use such data. 
Precise measurement or modeling of the solar resource is complicated by the rapidity with which 
the solar irradiance can change, the changing spectral composition of the irradiance, and the 
varied environment conditions experienced during measurements. 

Even with improving instrumentation and radiation models, the measurement or modeling of 
incident irradiance can have large uncertainties, depending on circumstances. The uncertainty in 
modeled values is typically obtained by comparison with reference measurements and is affected 
by the uncertainty in the measurements. Section 7.1 summarizes the GUM methodology for 
quantifying the uncertainty for measured irradiance. Afterward, the uncertainty of modeled data is 
discussed in sections 7.2 to 7.5. Note that the uncertainty in the modeled data is typically obtained 
by comparison with reference measurements, which is why the section on measurements comes 
first. Section 7.6 addresses the automatic irradiance data quality assessment.  

7.2 Measurement Uncertainty 
To characterize a quantity, referred to in the GUM terminology as the measurand, it is necessary to 
provide a measure of the quantity. This characterization of the measurand is incomplete without 
supplying a quantitative statement of the associated uncertainty. This uncertainty provides an 
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estimate of how well the value of the measurand is known and provides a range of values that will 
result from measurements taken under similar circumstances with similar instruments. In general, 
the measurand has four general sources of uncertainty: the act of measurement, the instrument doing 
the measurement, the device recording the measurement, and the environment in which the 
measurements take place. 

Any measurement only approximates the quantity being measured. Each element of a 
measurement system contributes to the final uncertainty of the data. The accuracy of solar radiation 
measurements made at ground stations depends on the radiometer specifications, proper 
installation and maintenance, data acquisition method and accuracy, calibration method and 
frequency, location, environmental conditions, and possible real-time or a posteriori adjustments to 
the data. A large portion of this overview of uncertainty in measurements of solar radiation made 
at ground stations is based on Habte et al. (2014, 2016b), Reda et al. (2011), Wilcox and Myers 
(2008), Myers et al. (2002), Stoffel et al. (2000), and Gueymard and Myers (2008a). 

7.2.1 Estimation of Calibration and Field Measurement Uncertainty  
The method to estimate uncertainty has changed significantly during the last few decades. The 
general adaptation to the current methodology takes time; hence, some outdated terminology 
and methods still appear in the literature and might be in use. Even though using the outdated 
methodologies are discouraged, short descriptions are provided to help users understand and 
correctly use uncertainty data based on older methodologies. 

Historically, uncertainty analysis treated sources of uncertainty in terms of random and bias error 
types. Random sources were related to the standard deviation or variance of measured data sets. 
Biases were estimates of deviations from a “true value” primarily based on engineering 
judgments of the measurement system performance. Total uncertainty (UTold) was computed as 
the square root of the sum of the squares for these two error types: 

 UTold = [Σ (Bias)2 + Σ(2·Random)2]1/2 (7-1) 

Factor 2 in the random term was necessary to “inflate” the random component and ultimately 
provide an approximate 95% confidence interval for the computed value of UTold. Factor 2 is 
equivalent to the coverage factor k in the current GUM terminology, where k≈2 for an infinite 
degree of freedom. This value assumes that the data points are normally distributed. Based on 
advancement in metrology science, the more comprehensive GUM model replaces this simple 
method. 

GUM is currently the accepted guide for measurement uncertainty (ISO 2008). Similarly, the 
method provides the expanded uncertainty for an approximate 95% confidence interval by 
multiplying the combined uncertainty by the coverage factor k (k = 1.96 for a Gaussian 
distribution for infinite degrees of freedom; it is often approximated as 2). GUM defines Type A 
uncertainty values as derived from statistical methods and Type B sources as evaluated by other 
means, such as scientific judgment, experience, specifications, comparisons, and calibration data. 
GUM defines the concept of a standard uncertainty (ustd) for each uncertainty type, which is an 
estimate of an equivalent standard deviation (of a specified distribution) of the source of 
uncertainty. To appropriately combine the various uncertainties, the GUM methodology uses a 
sensitivity coefficient (c) that is calculated from the measurement equation using partial 
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derivatives with respect to each input variable in the equation. The combined uncertainty (uc) is 
computed from the Type A and Type B standard uncertainties summed under quadrature—the 
square root of the sum of the squares. GUM removes the historical factor of 2 and introduces the 
coverage factor k (which depends on the known or assumed statistical distribution of 
uncertainties),37 which is applied to both types of uncertainty to compute the expanded 
uncertainty (UE) as:  

UE = k· uc = k· [Σ (Type B)2 + Σ (Type A)2]1/2  (7-2) 

As shown in Figure 7-1, the GUM procedure can be summarized in six steps (Habte et al. 2016b; 
Reda 2011): 

1. Define the measurement equation for the calibration and/or measurement system. 
This consists of a mathematical description of the relation between sensor voltage as 
well as any other independent variables and the desired output (calibration response or 
engineering units for measurements). The two example equations used to quantify 
radiometric measurement are: 

 𝐸𝐸 = (𝑉𝑉−𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛∗𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛)
𝑅𝑅

     or        𝐸𝐸 =  𝑉𝑉
𝑅𝑅

 (7-3) 
where: 

o E = irradiance, in W m-2 (global horizontal irradiance [GHI], global tilted 
irradiance [GTI], diffuse horizontal irradiance [DHI], or direct normal irradiance 
[DNI]); for DNI, Rnet ≈0, resulting in the simplified equation on the right. 

o R = responsivity of the radiometer in μV/ (W m-2)  
o V = sensor output voltage of the radiometer in μV 
o Rnet = net infrared responsivity of the radiometer in μV/(W m−2) 
o Wnet = effective net infrared irradiance measured by a collocated pyrgeometer in 

W m−2. 
In the case of GHI, the closure equation applies: 𝐸𝐸 = DNI ∗ cos(𝑍𝑍) + DHI, where: 

o DNI = beam irradiance measured by a primary or standard reference standard 
pyrheliometer in W m−2  

o Z = solar zenith angle (SZA), in degrees or radians 
o DHI = diffuse horizontal irradiance, measured by a shaded pyranometer (W m-2). 

2. Determine the sources of uncertainty. Most sources of uncertainty are obtained from 
statistical calculations, specifications from manufacturers, and previously published 
reports on radiometric data uncertainty or professional experience. Some common 
sources of uncertainty are associated with SZA response, spectral response, nonlinearity, 
temperature response, thermal loss, data logger accuracy, soiling, and calibration, 
including the drift of the calibration constant(s). 

 
37 k is 1.96 for a Gaussian distribution for a 95% confidence level. Generally, a 95% confidence level means that 
95% of the values will be within the statistical limits defined by the uncertainty. 
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Figure 7-1. Measurement uncertainty estimation flowchart. Image from Habte et al. (2016b) 

3. Calculate the standard uncertainty, u. In this step, an individual u for each variable in 
the measurement equation is calculated using either a statistical method (Type A 
uncertainty component) or other methods (Type B uncertainty component, such as 
manufacturer specifications, calibration results, and experimental or engineering 
experience). In the GUM method, the standard uncertainties are calculated by dividing 
the expanded uncertainty of each source by the corresponding statistical distribution 
(ASTM 2017). 

A. Type A uncertainty: 
i. Type A standard uncertainty is calculated by taking repeated 

measurements of the input quantity value, from which the sample mean 
and sample standard deviation (SD) can be calculated. The Type A 
standard uncertainty (u) can then be estimated by: 

SD = � ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋 𝑛𝑛
𝑖𝑖=1 )2

𝑛𝑛−1
   (7-4) 

where n is the number of measurements, Xi is the measured value, and 𝑋𝑋  is the 
average. 

B. Type B uncertainty: 
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Type B uncertainties are often provided as an expanded uncertainty (U). To be 
consistent with Type A uncertainties, the standard Type B uncertainties, u, are 
calculated from the expanded uncertainties, U. 

i. Equation for unknown statistical distribution (common assumption: 
rectangular distribution): u= U/√3, where U is the expanded uncertainty of 
a variable 

ii. Normal distribution: u= U/k, where k is a coverage factor of 2 or, more 
exactly, 1.96 (ISO 2008) 

iii. For other statistical distributions, the applicable values for k are used. 
4. Compute the sensitivity coefficient, c. To appropriately combine the various uncertainties 

in the next step, the uncertainties must be weighed. The GUM method does this by 
calculating the sensitivity coefficients (c) of the variables in a measurement equation. 
These coefficients affect the contribution of each input factor to the combined uncertainty 
of the irradiance value; therefore, the sensitivity coefficient for each input is calculated by 
partial differentiation with respect to each input variable in the measurement equation. 
Table 7-1 shows the sensitivity coefficients applicable to radiation measurements. 
The sensitivity equations given in Table 7-1 are for two distinct situations. The 
calibration sensitivity is for calibrations when the reference GHI is calculated from 
reference DNI and DHI measurements. The second column is for GHI measurements in 
the field. The calibration sensitivities are related to the inverse of the GHI value, whereas 
the field sensitivities are related to the inverse of the responsivity.  

Table 7-1. Example of Computing Sensitivity Coefficients for GHI Pyranometer Calibration 
and Measurement Using Partial Derivatives 

Calibration Sensitivity Equations Field Measurement Sensitivity Equations 

𝑐𝑐𝑉𝑉 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1

DNI cos(𝑍𝑍) + DHI
 cR=

∂GHI
∂R =

–(V–𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛)
R2  

 

𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

=
−𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛

DNI cos(𝑍𝑍) + DHI
 c𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛=

∂GHI
∂𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

=
–𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛

R
 

𝑐𝑐𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛
=

−Rnet

DNI cos(𝑍𝑍) + DHI
 c𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛=

∂GHI
∂𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛

=
–𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛

R
 

 
 

𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 =
𝜕𝜕𝜕𝜕
𝜕𝜕DNI

=
−(𝑉𝑉 − 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛  𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛)cos(𝑍𝑍)

( DNI cos(𝑍𝑍) + DHI)2
 c𝑉𝑉=

∂GHI
∂V

=
1
R

 

𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
DNI sin(𝑍𝑍) (𝑉𝑉 − 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛  𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛)

( DNI cos(𝑍𝑍) + DHI)2
  

𝑐𝑐𝐷𝐷 =
𝜕𝜕𝜕𝜕
𝜕𝜕DHI

=
−(𝑉𝑉 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛)

( DNI cos(𝑍𝑍) + DHI)2
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5. Calculate the combined standard uncertainty, uc. This is the combined standard 
uncertainty using the propagation of errors formula and quadrature (square root sum of 
squares) method. It is applicable to both Type A and Type B sources of uncertainty. 
Standard uncertainties (u) in Step 3 multiplied by their sensitivity factors (c) in Step 4 are 
combined in quadrature to give the combined standard uncertainty, uc:  

∑
−

=

=
1

0

2
* )(

n

j
c cuu

 

where n is the number of uncertain variables that are used to calculate the combined 
uncertainty. 

6. Calculate the expanded uncertainty (U95). The expanded uncertainty is calculated by 
multiplying the combined standard uncertainty by the coverage factor, typically by 
applying the Student’s t-analysis to determine the appropriate value of k (typically 1.96 
for 95% and 3 for 98% confidence, respectively, for large data sets assuming a Gaussian 
distribution): 

𝑈𝑈95 = 𝑘𝑘 ∗ 𝑢𝑢𝑐𝑐. (7-6) 

These six steps, also described in Figure 7-1, demonstrate that the uncertainty quantification is a 
cycle. This means that one can use the expanded uncertainty in Step 6 as an input to a 
measurement equation. This would be the case, for example, in calculations of the performance 
ratio of solar conversion systems: to calculate the ratio of system output/solar input, the 
expanded uncertainty in Step 6 is used as an input to evaluate the denominator (solar input), and 
the cycle continues to ultimately quantify the expanded uncertainty of the performance ratio. 

Further, these steps are applicable to the quantification of the uncertainty in both calibration and 
field measurements. Uncertainty in measurements begins with the uncertainty in calibration 
references, calibration processes, and sensor design characteristics. For example, for thermopile 
sensors, a calibration constant is required to convert the output voltage to the required irradiance, 
as discussed in Chapter 3. The resulting uncertainty in calibration factors must then be combined 
with the influence of additional sources of uncertainty in the field measurement instrumentation, 
installation methods, data acquisition, and operation-and-maintenance processes (Reda 2011). 
Overall, note that estimates of uncertainties for the magnitudes of values (e.g., voltage, Rnet) 
need some (documented) experimental, theoretical, or other (specifications) source. These are the 
magnitudes adjusted in these steps—for example, in the sensitivity coefficients calculation. Such 
example data are presented in several references (Reda 2011; Habte et al. 2014; Jörgen and 
Habte 2016; ASTM 2017). Further, users need to pay close attention to the source of 
uncertainties. For instance, the SZA uncertainty includes sources of error such as accuracy in 
latitude and longitude, air pressure (for refraction corrections), or timekeeping (clock accuracy). 
The units of these variables must be treated carefully and consistently, whether they are 
percentages (such as of full scale or reading) or absolute units (such as volts, degrees, or Watts 
per square meter). Additionally, it is essential to consider the symmetry of the sources of 
uncertainty. In this section, all sources of uncertainty are considered symmetric (+/-); however, 
some other sources could be asymmetric or one-sided. For example, Jörgen and Habte (2016) 
considered nonstability and zero offset as two one-sided sources of uncertainty. 

(7-5) 
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The measurement of terrestrial solar radiation is traceable to the internationally accepted World 
Radiometric Reference (WRR) (ISO 2018), discussed in Chapter 3. This internationally 
recognized measurement reference is a detector-based standard maintained by a group of 
electrically self-calibrating absolute cavity radiometers. The present accepted inherent expanded 
uncertainty in the WRR is ±0.30% (Finsterle 2011). Reference cavity radiometers used as 
national and institutional standards are calibrated by comparison to the World Standard Group of 
absolute cavity pyrheliometers. The transfer of calibrations from the WRR to national standards 
results in an expanded uncertainty for these measurement standards of ±0.45% (Reda, Dooraghi, 
and Habte 2013).  

Applying the GUM procedure to the case of pyrheliometer and pyranometer calibration, Table 7-
2 summarizes the estimated uncertainties that are typically found in practice. In addition, Table 
7-2 identifies the typical sources of uncertainty considered for the overall uncertainty analysis of 
irradiance measurements from two types of radiometers: radiometers with thermopile detector 
and photodiode radiometers with silicon detector before the application of correction functions 
for systematic errors. Note that the contribution to uncertainty caused by insufficient 
maintenance (alignment, leveling, cleaning, etc.) can be much greater than the combined 
uncertainties for well-maintained instruments. As explained in Chapter 3, instruments with clear 
optics (such as most thermopile radiometers) are more strongly affected by soiling; hence, the 
uncertainty related to their operation in the field depends on the regularity and quality of their 
maintenance over time. 

Table 7-2. Example of Estimated Expanded Uncertainties of Responsivities of Field Pyranometers 
and Pyrheliometers. Modified from Reda (2011) 

Type B Uncertainty 
Source 

Thermopile 
Pyranometer (%) 

Photodiode 
Pyranometer 

(%) 

Thermopile 
Pyrheliometer 

(%) 

Photodiode 
Pyrheliometer 

(%) 
Calibrationa 3 5 2 3 

Zenith responseb 2 2 0.5 1 

Azimuth response 1 1 0 0 

Spectral response 1 5 1.5 8 

Tiltc 0.2 0.2 0 0 

Nonlinearity 0.5 1 0.5 1 

Temperature response 1 1 1 1 

Aging per year 0.2 0.5 0.1 0.5 

U95  4.1 8.0 2.7 8.9 
a Includes zenith angle responses from 30° to 60° 
b Includes zenith angle responses from 0° to 30° and from 60° to 90° 
c This uncertainty is set to zero for untilted radiometers. 

Detailed uncertainty analyses for high-quality field pyrheliometers can be found in Michalsky et 
al. (2011); the study in Vuilleumier et al. (2014) is similar, but it also includes field 
pyranometers. These studies show that the uncertainty of the calibration is the most important 
contribution to the overall uncertainty for well-maintained high-quality instruments. The 
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calibration stability of the present commercially available pyrheliometers and pyranometers is 
generally satisfactory, as revealed by only a slight change in responsivity (Rs)—less than 0.1% 
and 0.2% per year, respectively. When finally deployed in the field, factors such as accuracy of 
solar tracking and/or leveling, data logger accuracy, cleanliness of the windows, and frequency 
of recalibration could contribute more sources of uncertainty. Even if these effects are kept low 
by following measurement best practices, expanded uncertainties of ±2.0%–±2.5% in field DNI 
measurements and ±3.0%–±5% in field GHI measurements have been found from a high-quality 
measurement system (Reda 2011). 

For rotating shadowband irradiometers (RSI) and photodiode pyranometers, one of the most 
crucial impacts on uncertainty is the spectral irradiance error. This is because silicon photodiode 
sensors detect only visible and near-infrared radiation in a limited range, 300–1200 nm at most, 
and have a spectral response that varies strongly within this wavelength interval. Further, the role 
of using algorithms to reduce systematic effects and the uncertainty introduced by imperfect 
shading must be considered. A more detailed uncertainty analysis for RSIs following GUM can 
be found in Wilbert et al. (2016). The study defines a method for the derivation of the spectral 
error and spectral uncertainties and presents quantitative values of the spectral and overall 
uncertainties. The results of this detailed analysis and other studies such as (Wilcox and Myers 
2008) indicated lower overall uncertainties than those presented in Table 7-2 for silicon 
photodiode pyranometers because the uncertainty for the silicon pyranometer described in Table 
7-2 does not include any rigorous adjustment methodology. The expanded measurement 
uncertainty for subhourly DNI measurements is approximately ±5% for a photodiode radiometer 
with state-of-the-art correction functions for systematic errors. For RSIs, GHI was found to be 
affected by slightly lower uncertainties than DNI (4%, k = 2, after application of state-of-the-art 
adjustment functions). Moreover, advanced adjustment functions were found to significantly 
reduce the uncertainty. 

The typical shade/unshade calibration uncertainty for any thermopile pyranometer with respect to 
a WRR reference cavity radiometer is ≈0.5% at any very narrow range (±2°–±5°) of SZA (Reda, 
Myers, and Stoffel 2008). Typically, Rs is selected as an average responsivity for a specified SZA 
(usually 45°); however, the irradiance is collected for a wide range of SZAs (0°–90°), and the 
measurement uncertainty over the whole range is larger. As shown in Chapter 3, for some 
pyranometers, Rs can vary by ±3%–±10% or even more over this zenith angle interval. These 
effects then need to be combined with the field measurement influences, the same as with the 
DNI measurement uncertainty estimate (e.g., including pyranometer installation, data logger 
accuracy, cleanliness, spectral dependency, or temperature sensitivity). 

If only one Rs is used for a wide range of solar angles, that value is often derived for relatively low 
SZAs. The variation of responsivity with SZA and azimuth angles is typically greater for high 
SZAs; hence, large uncertainties usually occur at high SZAs. These high-SZA-related uncertainties 
occur throughout parts of the day (early morning and late afternoon) when the available solar 
resource is much smaller than typical midday values and/or when SZAs are smaller. Because the 
minimum SZAs vary throughout the year (except close to the equator), the uncertainty in 
hemispherical radiation data will vary as well. This effect is especially important for latitudes 
beyond ±45°, when SZA is rarely greater than or equal to the SZA at which the responsivity of 
the pyranometer was determined.  
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Even when good measurement conditions exist, such as near midday under clear-sky conditions, 
the uncertainty in hemispherical field measurements is typically two to three times that of direct-
beam measurements, or ±4%–±5% throughout a year, primarily because of seasonal variations in 
uncertainty. Better instrumentation design and careful applications of correction factors as a 
function of SZA are ways to improve (reduce) the uncertainty in GHI measurements. The 
alternative is to use high-quality DNI and DHI measurements using a tracking shading disk/ball to 
derive GHI from the closure equation (Michalsky et al. 1999). The expanded uncertainty for this 
calculated GHI then approaches that of DNI (±2%) for clear-sky measurements. One limitation of 
this method, however, is that it assumes “perfect” operating condition such as tracking for both 
DNI and DHI. Slight misalignment of tracking and complete tracker failures do happen in practice, 
and large errors in all three components result, unless they are properly detected during the quality 
control procedure—which is difficult in practice. 

Figure 7-2 shows the calibration traceability for pyrheliometers used to measure DNI and for 
pyranometers used to measure GHI or DHI. The figure indicates how uncertainties accumulate 
from calibration to field deployment. Broad arrow boxes show the accumulated expanded 
uncertainty at each phase of the process. The resulting uncertainty in field deployment for 
pyrheliometers is ±2.0%–±2.5% in this example, assuming regular and high-quality maintenance. 
Measurement uncertainties for pyranometers used to measure GHI in the field range from ±3.0%–
±5% for SZAs between 30° and 60° but are higher for angles greater than 60°, again assuming 
regular and high-quality maintenance. 

Calibrations of pyranometers are normally performed on the horizontal (GHI) but can also be 
performed at tilt (GTI). Pyranometers measuring GHI are calibrated on the horizontal using either 
a reference GHI or from DNI and DHI measurements. Calibration of a tilted pyranometer is done 
using a reference pyranometer under the same tilt. Tilting a pyranometer for GTI measurements 
typically alters its responsivity because of, for example, changes in convection patterns inside the 
dome or changes in thermal offset. This typically affects the calibration uncertainty of GTI 
measurements. Some thermopile pyranometers are not designed for tilted measurements, and at 
certain times of day, direct sunlight can strike their unshaded body, affecting measurements. Proper 
shielding of the instrument’s body can reduce or eliminate this problem. To help evaluate the 
uncertainty in GTI data, the metadata of such data sets should include shielding information. This 
caveat also holds for the measurement of upwelling irradiance using a down-facing pyranometer. 
(This measurement is necessary to obtain the surface albedo by dividing it by GHI.) 

The calibration and assessment of calibration and field uncertainties for pyrheliometers and 
pyranometers are described in detail in national and international standards, including the ASTM 
International G167-15,38 ASTM E816-15,39 ASTM E824 - 10(2018)e1,40 ASTM G183-15,41 ISO 
9059,42 ISO 9846,43 and ISO 9847.44 

 
38 See https://www.astm.org/Standards/G167.htm. 
39 See https://www.astm.org/Standards/E816.htm.  
40 See https://www.astm.org/Standards/E824.htm.  
41 See https://www.astm.org/Standards/G183.htm.  
42 See https://www.iso.org/standard/16628.html?browse=tc.  
43 See https://www.iso.org/standard/17724.html?browse=tc.  
44 See https://www.iso.org/standard/17725.html?browse=tc.  

https://www.astm.org/Standards/G167.htm
https://www.astm.org/Standards/E816.htm
https://www.astm.org/Standards/E824.htm
https://www.astm.org/Standards/G183.htm
https://www.iso.org/standard/16628.html?browse=tc
https://www.iso.org/standard/17724.html?browse=tc
https://www.iso.org/standard/17725.html?browse=tc
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Figure 7-2. Calibration traceability and accumulation of measurement uncertainty for 

pyrheliometers and pyranometers (coverage factor k = 2). Image by NREL 

7.3 Uncertainty Quantification of Solar Resource Estimates 
Solar radiation can be modeled in many different ways, depending on the available inputs, origin 
(ground-based or satellite-based), application requirements (e.g., clear-sky or all-sky conditions), 
and degree of detail (broadband or spectral irradiance). 

Satellite-based models estimating solar radiation can use a physics-based approach relying on 
radiative transfer modeling, an empirical or semiempirical approach relating the reflected 
radiance sensed by the satellite sensor directly to surface radiation, or a mix of both.  

Models derived using empirical or semiempirical correlations between ground-based irradiance 
measurements and reflected radiance observations from satellite sensors inherently carry the 
uncertainty of all these measurements. This uncertainty is embedded in the ultimate model 
accuracy, along with the uncertainties associated with the satellite sensors and the modeling 
process. Models based on ground-based irradiance measurements with 2%, 5%, or 10% 
uncertainty cannot have a lower uncertainty than the data used to derive and/or validate the 
model. Similarly, models based on the first principles of physics and radiation transfer cannot be 
validated or verified to a level of accuracy greater than that of the ground-based irradiance 
measurements. A thoroughly documented uncertainty analysis of these measurements 
(Gueymard and Myers 2008b, 2009; Habte et al. 2016a; Vuilleumier et al. 2014) is necessary to 
ascertain the validity of model accuracy claims. The effect of biases in ground-based irradiance 
measurements should be part of any model analysis. 
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An understanding of the differences between the perspectives of satellite-derived irradiance 
values and ground-based measurements is essential when ground-based data are used to derive 
and validate satellite-derived irradiance values. Observations of a specific pixel (or grid cell) by 
a spaceborne radiometer ultimately provide (after substantial modeling) an estimate of surface 
radiation based on the estimated properties of those clouds and other atmospheric constituents 
spread throughout that pixel or a larger area. In contrast, surface irradiance observations are 
made by an instrument viewing the sky from a specific point. If the satellite pixel size is small 
enough, parallax errors enter into the comparison. Conversely, if it is too large, the radiation field 
over the pixel might not be homogenous enough for a correct comparison. Terrain effects could 
also influence a comparison in which cloudiness, elevation, and/or topographic shading could 
vary within a short distance. Often the data available for satellite modeling lack the exactitude 
for differentiating fine variations seen by ground-based measurements. This can be compounded 
by the fact that ground measurements represent an average irradiance value calculated over a 
fixed time interval (e.g., 1 min or 10 min), whereas satellite-based model predictions solely rely 
on snapshots (instantaneous observations) taken at different intervals (e.g., every 30 min). 

7.4 Historical Uncertainty Quantification Approach of Solar Resource 
Estimates from Models 

This section presents the historical uncertainty quantification approach of radiation models. This 
provides an overview of progress in satellite-based data quality. To alleviate the absence of any 
standardized method for accuracy assessment, many possible statistical metrics used in the 
literature have been reviewed (Gueymard 2014). Still, most authors report only the root-mean-
square deviation and bias (absolute or relative). As an example, the model of Darnell et al. 
(1988) was used to evaluate surface radiation using cloud information from the International 
Satellite Cloud Climatology Project C1 cloud database. The results were then compared to surface 
observations collected by the World Radiation Data Center by Darnell and Staylor (1992). The 
root-mean-square error (RMSE) from this comparison was approximately 16 W m-2, and the bias 
(also known as mean bias error, MBE) was ≈4 W m-2. Note that the interpretation of the reported 
source of uncertainties depends on the spatial and temporal resolution of the data being 
compared (random errors tend to decrease rapidly with increasing averaging period) and that the 
relative uncertainties in the modeled DNI are always greater than in GHI—opposite to what 
occurs with high-quality measurements. 

According to Perez et al. (1987), satellite-based retrievals of hourly DNI were “accurate” to 
10%–12%. Later, Renné et al. (1999) and Zelenka et al. (1999) found that the target-specific 
comparison to ground-based observations had a relative RMSE of at least 20%; the time-specific 
pixel-wide accuracy was 10%–12% on an hourly basis at the sites under scrutiny. Most 
uncertainties contain values that are proportional to the measured values (percentage), given that 
the measured values are within a certain range and specifications are related to a fixed value in 
W m-2. The validation of satellite-based irradiance predictions is sometimes performed on a daily 
(instead of hourly or subhourly) timescale. This might not always be appropriate, particularly in 
areas where strong morning/afternoon cloudiness asymmetries exist (Salazar et al. 2019). 
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7.5 Current Uncertainty Quantification Approach of Solar Resource 
Estimates from Models 

To improve modeled data integrity, a comprehensive representation of the model uncertainty 
method is required. The assessment of model uncertainty attempts to replicate the developments 
made for measurement uncertainty, as detailed in Section 7.1, with the caveat that an equivalent 
of the GUM, specifically addressing modeled estimates, does not exist yet. It is essential to use 
measurements of solar radiation made at ground stations from regions in various climates (or 
even microclimates) with the goal to perform a detailed evaluation of the modeled data set; 
however, measurements of solar radiation made at ground stations are temporally and spatially 
sparse, and they are expensive to operate and maintain. Further, to perform an accurate 
evaluation of the model’s predictions, it is critical that these ground-based irradiance 
measurements be of high quality and rely on low-uncertainty radiometers that follow the best 
practices for collection, operation, maintenance, and quality assurance. 

An important distinction between measurements and model estimates is that the latter actually 
include two separate sources of uncertainty, which in principle would need to be decoupled. 
These sources are (1) the intrinsic model’s uncertainty (caused by inadequacies in the model’s 
functions, which do not perfectly describe the physical radiation transport processes in the 
atmosphere) and (2) the error propagation uncertainty (caused by unavoidable imperfections in 
the model’s inputs, which make their way to the model’s outputs)]. The model itself is perfectly 
repeatable, but its inputs are not—all the more that a specific model can be used with different 
sets of inputs, depending on availability, location, period, model operator, etc. Additionally, the 
distinction introduced above clearly indicates that the term model uncertainty should not be 
confused with prediction uncertainty because the latter includes the two sources of uncertainty 
just described. (Hence, the prediction uncertainty is necessarily larger than the intrinsic model 
uncertainty.) Whereas the former can be evaluated using a reproducible theoretical approach 
(ideally by comparison with a “perfect” physical model), the latter is more difficult to establish.  

The error propagation effects can be evaluated by analyzing the model’s sensitivity to variations 
in its inputs (of supposedly known uncertainty), with an approach that has already been 
demonstrated for clear-sky radiation models (Gueymard 2003). In practice, however, the quality 
of irradiance predictions is evaluated against ground measurements that are not perfect and have 
uncertainty themselves, as discussed in Section 7.1. Hence, the prediction uncertainty needs to 
take the measurement uncertainty into account, resulting in what could be called effective 
prediction uncertainty, which is necessarily larger than the raw prediction uncertainty just 
described. It is important to consider that the latter is not necessarily independent from the 
measurement uncertainty, which complicates the picture, as demonstrated by the following 
example. Suppose that the predictions from two models, M1 and M2, are compared against GHI 
measurements obtained with a high-quality pyranometer of assumed 5% uncertainty (from 
Section 7.1). Unbeknownst to the analyst, however, that specific instrument is incorrectly 
calibrated, resulting in a systematic bias of +3% in the measurements. Unbeknownst to the 
analyst as well, M1 and M2 behave the same in terms of introducing randomness in their outputs, 
but M1 happens to be perfectly centered (no bias), whereas M2 is biased +3% for the specific 
inputs used at that specific location. The comparison with ground measurements would lead the 
analyst to the incorrect conclusion that M2 is better than M1 and that the latter’s uncertainty is 
larger than the former’s. 
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Studies such as those by Habte, Sengupta, and Lopez (2017); Šúri and Cebecauer (2014); Wilcox 
(2012); Gueymard (2014); Thevenard and Pelland (2013); and Cebecauer, Perez, and Šúri (2011) 
discussed quantification methods aimed at a comprehensive representation of prediction 
uncertainty using different interpretations of the GUM method. Various error statistics (bias, 
random error metrics) can be used to evaluate the effective uncertainty of modeled data when 
also considering the uncertainty in the ground-based irradiance measurements.  

In the absence of a specific standard for the evaluation of prediction uncertainty, the National 
Renewable Energy Laboratory (NREL) developed a way to include these sources and derive the 
uncertainty estimate for a 95% confidence interval representing two standard deviations 
(coverage factor of ≈2): 

 𝑈𝑈95 = 𝑘𝑘 ∗  ��𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘
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where Umeas is the expanded (95% level of confidence) estimated uncertainty in ground-based 
irradiance measurements (“ground truth”), and both bias and RMSE are derived from the 
model’s validation analyses. As described in Section 7.1.1, these three statistics are divided by k 
(≈2 assuming normal distribution). In this conservative approach, the resulting U95 might be 
pessimistic because RMSE includes the bias error, which is thus counted twice; therefore, the 
authors of this handbook are investigating to find statistic metrics that assist in quantifying the 
overall uncertainty, which they will report in the next edition. 

Habte, Sengupta, and Lopez (2017) determined the method of estimating the overall uncertainty 
of the modeled irradiance data in the National Solar Radiation Database (NSRDB) Physical 
Solar Model (PSM) Version 2 (1998–2015). This method was applicable for hourly averages, 
daily totals, monthly means of daily totals, and annual differences. Varying the time interval 
helps capture the temporal uncertainty of the specific modeled solar resource data required for 
each phase of a solar energy project. For instance, the annual (or seasonal) data uncertainty 
estimate is important for financial analysts during the conceptual phase of a project, whereas the 
uncertainty in hourly data is essential during the engineering design phase and due-diligence 
studies. Using the same method, Figure 7-3 shows the overall uncertainty of the NSRDB PSM 
Version 3 (1998–2017). 

As shown in Figure 7-3, an uncertainty of 5% was assumed for the measurements (red dashed 
line) and kept constant throughout the averaging time because, for radiometers, the main source 
of uncertainty does not normally change with averaging time (Habte, Sengupta, and Lopez 2017; 
Reda 2011); however, one can substitute the estimated 5% with any other measurement 
uncertainty value that would be specifically determined using the GUM method. It is also 
essential to estimate any possible systematic bias in the measurements because this would 
directly affect the model validation process, as discussed above. Systematic biases can be caused 
by the lack of repeatability of a radiometer, calibration error, data logger issues, etc. Such 
systematic errors are assumed negligible in the following results. 

The relative GHI bias and RMSE associated with Figure 7-3 are shown in Figure 7-4. It is 
obvious that both bias and RMSE might vary depending on the radiative climate of the location, 
among other factors. 

(7-7) 
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Figure 7-3. Overall uncertainty estimation at the 95% confidence interval (CI; k≈2) for the modeled 

GHI for NSRDB PSM Version 3 and under various time averages at seven NOAA SURFRAD 
locations. The Version 3 data used in this figure are from 1998–2017. Note: The red dashed line is 

the assumed uncertainty in the measurement data. Image by NREL 

 
Figure 7-4. (Top) Relative GHI bias and (bottom) RMSE comparison results of hourly modeled data 
from the NSRDB PSM Version 3 (1998–2017) relative to irradiance measurements made at seven 

stations from the NOAA SURFRAD network 
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In contrast with NREL’s Eq. 7-7, Solargis implemented a slightly different approach to 
determine uncertainty in their satellite-derived data sets by incorporating the model uncertainty, 
the uncertainty of the ground-based irradiance measurements, and the interannual irradiance 
variability:  

 𝑢𝑢combined = ±�(𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 + (𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)2 (7-8) 

The annual solar resource is thus allowed to vary from the long-term averages. A detailed 
discussion about the relative importance of these uncertainties is provided in Cebecauer, Perez, 
and Šúri (2011). 

Following Gueymard and Wilcox (2011), Habte, Sengupta, and Lopez (2017) formalized an 
interannual variability metric as follows: 

 SD = �� 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 (𝑎𝑎𝑖𝑖 − â)2�   (7-9) 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(%) = COV(%) =  SD
â
∗ 100 (7-10)

   

where SD is the standard deviation, and 𝑎𝑎𝑖𝑖 is the average irradiance of the ith year of the 
considered period of n years. The mean irradiance during the selected long-term period is 
represented by â. 

In parallel, the accuracy of satellite-derived modeled data can be determined using various other 
statistical indicators, such as the mean absolute error or the Kolmogorov-Smirnov test (Massey 
1951). The Kolmogorov-Smirnov test is a rigorous nonparametric method that is used for 
benchmarking satellite-retrieved GHI and DNI against ground-based observations (Espinar et al. 
2009; Gueymard 2014). Many methods are described in Beyer et al. (2009), such as the 
Kolmogorov-Smirnov integral (KSI), which calculates the area differences between two 
Cumulative Distribution Frequencies to determine the deviation, for example, between satellite-
derived data and ground measurement data. Another is the OVER method, which assimilates the 
original KSI and attempts to find values that are above a critical value. Unlike MBE and RMSE, 
OVER provides a relative frequency of exceedance situations when the normalized distribution 
of predictions exceeds the critical limit that would make it statistically undistinguishable from 
the reference distribution (Gueymard 2014). This test has the advantage of being nonparametric 
and is therefore not distribution dependent. It compares the two distributions of irradiance to 
evaluate their resemblance. In the future, it can be expected that more elaborate methods, such as 
those used in the meteorological community to quantify the performance of weather forecasts 
(Murphy 1993), will be adopted more often in large-scale solar resource assessment studies.  

7.6 Modeled Data Uncertainty Estimation Challenges 
Satellite-derived irradiance data sets have various embedded sources of uncertainty (Cebecauer, 
Perez, and Šúri 2011; Cebecauer, Šúri, and Gueymard 2011; Perez, Cebecauer, and Šúri 2013). 
Most importantly, irradiance values obtained from satellite-based models use satellite 
observations of clouds. The satellite pixel represents a certain area, typically 1–100 km2. 
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Depending on that size, some subpixel variability and cloud-induced parallax effects could 
contribute to higher random errors in both GHI and DNI, as suggested by previous studies, e.g., 
Habte, Sengupta, and Lopez (2017); Cebecauer, Perez, and Šúri (2011); and Zelenka et al. 
(1999). In intermittent cloud situations, the resolution of satellite images has limited ability to 
adequately describe properties of small and scattered clouds. This problem can be exacerbated 
when a physical retrieval method is used to first characterize the cloud optical properties for a 
given pixel, which can result in actual partly cloudy periods being classified as cloudless, thus 
yielding significant positive bias in DNI, for instance (Salazar et al. 2019).  

In tropical rainforest climates, it is often challenging to find cloudless situations for 
characterizing the surface albedo, which is often used as a reference based on which the pixel’s 
overall cloudiness characteristics can be eventually quantified. For geostationary satellites at 
high latitudes, the low satellite viewing angles introduce errors in the detection of cloud position 
and properties (the satellite sensor most often sees clouds from the side rather than from the top). 
For intermittent cloud situations, the major part of the observed random errors (evaluated by 
RMSE statistics) is driven by inadequacies in the cloud-related portions of the radiative transfer 
algorithms. 

Adequate specification of aerosols is another area of concern (Cebecauer, Šúri, and Gueymard 
2011). Aerosols tend to affect DNI three to four times more than GHI, depending on the relative 
proportions of absorption and scattering for the specific aerosol mixture of the moment and 
location (Gueymard 2012). For example, mineral dust is mostly scattering, whereas black carbon 
is partly absorbing. At any instant, the aerosol optical depth (AOD) varies spectrally, so the 
common use of a single broadband AOD could result in additional uncertainties. (See Section 5.5 
in Chapter 5 for more information on AOD.) When monthly (or “climatological”) AOD averages 
are used, they could introduce significant errors in long-term DNI estimates (Ruiz-Arias et al. 
2016). This is more likely to happen over areas of biomass burning, urban air pollution, and dust 
storms, where an aerosol climatology tends to smooth out episodic high-AOD events; therefore, 
it is advantageous to use AOD data with daily or subdaily resolution in advanced modeling 
approaches (Cebecauer, Šúri, and Gueymard 2011; Gueymard, Habte, and Sengupta 2018). 

In regions with variable or complex landscape patterns (e.g., high spatial variability caused by 
land/water mosaics, complex urbanization, or mountains), the surface reflectance properties 
change rapidly, both over the space and time domains and even over distances that are shorter 
than the satellite’s spatial resolution. (See Chapter 5, Section 5.11, for more information on this 
topic.) Compared to neighboring rural or natural landscapes, large urban or industrial areas have 
much higher and temporarily changing concentrations of aerosols and water vapor. Over 
mountains, rapid changes in elevation also induce rapid changes in the concentration of key 
atmospheric constituents and in cloud properties. In addition, 3D effects and terrain shading are 
local complexities that need to be considered and approximated by the solar radiation models. 

Another difficulty inherent to satellite-derived data sets is the poor discrimination between 
clouds and snow-covered surfaces when using only the visible imagery. This is because both 
situations have a high reflectance in the visible spectrum; hence, a clear-sky scene over snowy 
ground might look like an overcast sky, resulting in a strong overestimation or underestimation 
of both GHI and DNI, depending on the situation (Vignola and Perez 2002; Perez et al. 2002). 
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One such adverse situation is known as the “Eugene syndrome” (Gueymard and Wilcox 2011). 
The use of multiple channels in the visible and infrared can solve this issue. 

Finally, specular reflections of significant intensity, especially from sandy deserts or snowy/icy 
surfaces during certain times of the day, could result in interpreting the satellite image as 
temporarily cloudy and thus in an underestimation of both GHI and DNI. Theoretically, this 
issue can be resolved by estimating the probability of specular reflection for such areas and 
factoring that into the calculation of surface radiation. 

7.6.1 Indicative Uncertainty of Modern Satellite-Based Models 
As an example, experience based on more than 200 validation sites shows that state-of the-art 
semiempirical satellite models can estimate the annual GHI with bias ranging from ±4% when 
normalized to daytime irradiation (Cebecauer and Šúri 2012). This bias value depends on 
topography and climate. It can be higher (up to at least ±8%) in complex tropical regions; in 
areas with high atmospheric pollution, high latitudes, high mountains, and complex terrain; and 
in regions with low sun angles and the occurrence of snow. Typical bias for DNI estimates at a 
specific site is approximately twice that of GHI.  

Regarding random errors, the main sources of increased uncertainty are clouds and, to a lesser 
extent, changes in snow cover and increased dynamics of aerosols. Over arid and semiarid areas 
or during sunny seasons, the RMSE of hourly GHI values normally range from 7%–20%. In 
more cloudy regions with more intricate weather patterns, higher dynamics of atmospheric 
constituents, complex landscapes, or middle latitudes, the hourly RMSE increases to 15%–30%. 
Over high mountains, high latitudes, or during seasons with low sun angles and frequent 
occurrences of snow, the relative RMSE for GHI can be 25%–35% or more. Similar patterns of 
RMSE exist for the hourly DNI but with approximately twice the errors mentioned for GHI. In 
arid and semiarid zones, which are of the highest interest for concentrating solar energy 
technologies, RMSE for the hourly DNI ranging from 18%–30% is typical. In more cloudy 
regions, with significant dynamics exhibited by aerosols, RMSE can reach 25%–45%. Finally, at 
high latitudes and over mountains, RMSE could exceed 45%. 

With continuous progress in satellite sensors and radiation models, it can be expected that the 
accuracy in satellite-derived databases will continue to improve, as suggested by recent 
validation results (Babar, Gaversen, and Boström 2018, 2019; Bright 2019; Kamath and 
Srinivasan 2020; Shi et al. 2018; Urraca et al. 2018). In Urraca et al. (2017), satellite data are 
used to test ground measurements using the positive-quality aspects of satellite-based irradiance 
data. 

7.7 Methods of Automated Data Quality Evaluation 
Data quality assessment is a method by which data quality can be judged based on criteria for a 
particular application. Several particular errors of meteorological data can be detected by 
automatic screening algorithms. Corresponding tests for radiation data are documented in a 
number of publications, including Espinar et al. (2011); Journée and Bertrand (2011); Long and 
Shi (2008); Longman, Giambelluca, and Nulle 2013; Maxwell, Wilcox, and Rymes (1993); 
Perez-Astudillo, Bachour, and Pomares (2016); Urraca et al. (2017); and Wilcox and 
McCormack (2011). Auxiliary data of direct interest can also be tested, as explained in Geuder et 
al. (2015). The main parameters discussed there are data logger and battery voltage; logger 

https://www.researchgate.net/researcher/2049299180_Dunia_Bachour?_iepl%5BviewId%5D=2KZLs9RlhxbXUQpADvGf15w1&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A310796513&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Luis_Martin_Pomares?_iepl%5BviewId%5D=2KZLs9RlhxbXUQpADvGf15w1&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A310796513&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
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temperature; speed of ventilation units; and meteorological measurands, such as wind speed and 
pressure. Data can be compared to certain physical limits that have been determined to be 
reasonable, with redundant or complementary measurements, or with physical or empirical 
models—all of which will provide some degree of independent measure for a quality judgment.  

Moreover, one common method for evaluating the quality of DNI, GHI, and DHI is a three-
component closure test. The measurements of DNI and DHI can be combined mathematically to 
derive GHI, as described in Eq. 2-2a. When all three components are measured, measurement 
redundancy is apparent because any one component can be derived from the other two; hence, in 
the context of quality assurance, the expected values of each component can be calculated from 
any other two. This method helps quantify the relative deviation among the three components, 
although it does not automatically determine strictly which specific measurement—or 
measurements—increases the deviation. Even though one, two, or all three value(s) could be 
responsible for the mismatch, the magnitude of the mismatch could indicate the presence of a 
problem in the data. Moreover, operational knowledge of the instruments and trackers can 
provide valuable insight into likely problems. A frequent problem is caused by malfunction of 
the tracker. If the pyrheliometer does not point at the sun, DNI is ≈0 and DHI≈GHI. This 
situation could last for hours and can be incorrectly interpreted as the signature of an overcast 
sky. Similarly, a slightly misaligned tracker would cause a too low DNI and too high DHI. With 
this information, combined with the visual detection of trends in the magnitude of flagging, a 
data quality expert can quickly spot common operational problems. For example, one can 
visually inspect the data by plotting the difference between the measured and derived GHI as a 
function of SZA. Any deviation from the true cosine response of the pyranometer would become 
apparent and would be cause for concern. Based on this discussion, it is clear that the 
independent measurement of the three redundant components is a significant and important tool 
for data quality analysis, which should be strongly considered when specifying instrumentation 
for a station.45 

The three-component method is generally more reliable than a simple clear-sky data analysis in 
which some conclusions are drawn based on modeled or other expected values of clear-sky data. 
Significant day-to-day variations in clear-sky data can occur because of variations in atmospheric 
constituents, such as aerosols or water vapor; thus, such natural variations can make it difficult to 
draw conclusions about possible instrument problems without specific information regarding 
other critical atmospheric components. 

The following sections summarize two methods of automated quality checks for solar 
measurement data. In addition to the quality-control checks described here, partly similar checks 
must be applied during the data acquisition of measured radiation data. These checks are 
described in Chapter 3, Section 3.4.2.  

There are many other data quality-control and assessment methods as well, such as the Baseline 
Surface Radiation Network (BSRN), Management and Exploitation of Solar Resource 
Knowledge (MESOR), ENergy DOwnstReam Services (ENDORSE), Meteorological 
Data Management System (MDMS), and Copernicus Atmosphere Monitoring System (CAMS). 

 
45 Note that even though RSIs provide three components, they measure only two of them per se—hence preventing 
them access to this procedure.  
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It is anticipated that the next editions of this handbook will include detailed discussions of these 
and other methods. 

7.7.1 SERI QC 
The SERI QC software package was developed by the Solar Energy Research Institute (SERI, 
now NREL) to address the need for performing quality assessment on large sets of solar 
measurement data (Maxwell, Wilcox, and Rymes 1993). SERI QC and associated programs are 
available from https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-assessment-
software.  

At the time of development, in the late 1980s, measured solar data were not common, although 
some entities recognized the need for conducting solar resource assessments, and some 
significant measurement programs were underway. SERI QC was developed largely using hourly 
measurement data from the SOLMET network established by the U.S. National Weather Service 
and the National Oceanic and Atmospheric Administration (NOAA). SOLMET data were 
collected with an hourly time step, and other smaller data sets of 5-minute and 1-minute time 
steps were also used during the SERI QC development. 

SERI QC was envisioned to provide data quality assessment for one-, two-, or three-component 
solar data with time resolutions from 1 minute to 1 hour. That software is not a stand-alone 
program but rather a function in the C programming language (and earlier, the Fortran language) 
that evaluates only one record of data at a single point in time (e.g., a single set of one-, two- or 
three-component measurements). The function is provided for users to write an analytic program 
that ingests the data, calls the SERI QC function, and then reports or otherwise uses the flags 
returned from the function. The SERI QC software package includes a sample program and a 
benchmarking data file. 

For three-component data, SERI QC performs the three-component closure test in the realm of 
normalized indices (i.e., Kt, Kn, and Kd). This analysis is performed in K-space to remove the 
SZA effect. Thus, in K-space, Eq. 2-2a translates into: 

 Kt = Kn + Kd (7-11) 

Or, rearranged, the deviation from this equation of component closure can be quantified as the 
residual error and represented by: 

 Ɛ = Kt – Kn – Kd (7-12) 

Perfect component closure would result in Kt – Kn – Kd = 0; hence, any nonzero value indicates 
some disagreement among the instruments, and a flag is assigned based on the magnitude of the 
disagreement. This method does not reveal which component or components have problems, 
however; it reveals only that there is some disagreement. Further, compensations of random 
deviations or systematic biases can result in a “false” zero value. This is the case when, for 
instance, the tracker is completely misaligned.  

To achieve a quality test for two-component data, a scheme was developed to exploit the 
relationship between Kn and Kt. The two values are not independent; in fact, they correlate to 

https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-assessment-software
https://www.osti.gov/biblio/1231498-seri-qc-solar-data-quality-assessment-software
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some degree because Kn is a subset of Kt (Eq. 7-11). Figure 7-5 shows this relationship by 
plotting Kn against Kt. For every value of Kt (x axis), there exists a range of valid values for Kn (y 
axis). This scheme significantly narrows the range of valid combinations of Kt and Kn. (In the 
figure, three subsets of data are evaluated based on air mass.) When two measured components 
include Kd rather than either Kt or Kn, the missing value is calculated for this Kt-Kn analysis using 
Eq. 7-11. 

Thus, by determining the range boundaries on the relationship, which is site specific, suspect data 
can be identified, although not with the same precision as three-component closure, where there 
is only one zero-residual solution to the equation. 

The SERI QC package includes a stand-alone executable for the Windows operating system 
called QCFIT (Figure 7-5), which uses historic data from a site to fit the bounds on expected 
values for two-component data. The QCFIT program also includes various analytic capabilities 
to investigate errant or anomalous data. 

 
Figure 7-5. Display from QCFIT program to aid in the setting boundaries for SERI QC. Image from 

NREL 

SERI QC can also perform rudimentary quality checks on one-component data by virtue of 
maximum and minimum limits set according to historical data. 

The SERI QC flagging scheme provides information about the magnitude of the error, the 
direction of the error (high or low), and what test (one-, two-, or three-component) produced the 
flag. With this information, a program that calls the SERI QC function can generate a report with 
enough information for an expert, or data quality analyst, to formulate a likely failure mode in 
the equipment (Wilcox and McCormack, 2011). Figure 7-6 shows SERI QC flags in the leftmost 
panel in gradation by severity from dark blue (low error) to red (high error). Plots have hour of 
day on the x-axis and day of month on the y-axis, allowing for an inspection of an entire month 
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of data. The right three panels show the corresponding K-space solar values for global (Kt), direct 
(Kn), and diffuse (Kd) to aid in identifying periods corresponding with the flags. 

 
Figure 7-6. Example of data quality-assurance reporting using SERI-QC flags. Image by NREL 

7.7.2 QCRad 
The QCRad data quality software (Long and Shi 2006, 2008) aids the data quality assessment of 
large amounts of solar data from the U.S. Department of Energy’s Atmospheric Radiation 
Measurement (ARM) program. The measurements support climate research, and in addition to a 
comprehensive complement of meteorological parameters, they include a superset of radiation 
measurements beyond those typically used in renewable energy solar resource assessment. With 
many other collocated measurements available, the method can establish more refined physical 
limits for measurements. In some cases, the results provide diagnostics beyond the ambiguous 
results from the three-component closure test described above (which cannot determine the exact 
cause of disagreement).  

QCRad uses surface climate analyses and historic data to establish the probable maximum and 
minimum limits on a measurement. These tests include limits established for quality checks for the 
BSRN data (Long and Dutton 2002), and other tests rely on site-specific parameters that can be 
fine-tuned for each station. Each measurement might undergo a series of preliminary tests before 
being used in a multiple-parameter test. Different limits for GHI are established based on historical 
preponderance, physically possible, and a modeled clear-sky value. The diffuse measurement (DIF 
in ARM nomenclature) is checked for values less than theoretical limits, and if necessary, a 
correction is applied to both the diffuse and global measurements. If these and other tests are 
passed, then QCRad applies a modified three-component closure test. Using Eq. 7-11 to calculate 
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Kt = Kn + Kd, the Kt derived from the global measurement is ratioed with the calculated Kt. A ratio 
of 1.0 represents perfect agreement among the instruments, and any other value indicates some 
disagreement. Long and Shi (2008) established boundaries for that closure ratio. 

Some tests comparing global and diffuse can give information indicating the likelihood of a 
tracker failure that allows part or all the direct beam component to bypass the diffuse shading 
apparatus and irradiate the diffuse instrument. Moreover, a few tests typically require a 
preliminary climatological analysis to establish the site-dependent coefficients to define 
reasonable limits and to identify incorrect and/or suspect reading. 

QCRad can be run at the end of each day. The program scans the whole daily time series and 
makes adjustments to the initial clear-sky irradiance estimates to account for the specific 
atmospheric conditions of that day. ARM runs QCRad in a batch processing mode on a daily 
interval once the complete data set is available from the previous day. Many QCRad tests 
produce two-tiered flag results, providing not only a qualification of severity but also in some 
cases an indication of high or low values. In the ARM processes, the flags are used to generate 
reports for the entire network, allowing an analyst to quickly scan the results and direct attention 
to stations with malfunctioning equipment. Other reports with a longer timescale can be used to 
identify errors from instrument drift or other slowly developing failure conditions. 

QCRad is not available by software distribution, but the algorithms and inputs are summarized in 
Long and Shi (2006, 2008). 
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8.1 Introduction 
Solar resource forecasting is critical for the operation and management of solar power plants and 
electric grids. Solar radiation is highly variable because it is driven mainly by synoptic and local 
weather patterns. This high variability presents challenges to meeting power production and 
demand curves, notably in the case of solar photovoltaic (PV) power plants, which have little or 
no storage capacity. For concentrating solar power (CSP) plants, variability issues are partially 
mitigated by the thermal inertia of the plant, including its heat transfer fluid, heat exchangers, 
turbines, and potentially coupling with a heat storage facility; however, temporally and spatially 
varying irradiance introduces thermal stress in critical system components and plant management 
issues that can result in the degradation of the overall system’s performance and reduction of the 
plant’s lifetime. The variability can also result in lower plant efficiencies than those that occur 
under operation in stable conditions because optimally operating the plant under variable 
conditions is significantly more challenging. For PV power plants that have battery storage, 
forecasts are helpful for scheduling the charging process of the batteries at the most appropriate 
time, optimizing the fractions of electricity delivered and stored at any instant, and thus avoiding 
the loss of usable energy. 

Solar radiation forecasting anticipates the solar radiation transients and the power production of 
solar energy systems, allowing for the setup of contingency mechanisms to mitigate any 
deviation from the required production.  

With the expected integration of increasing shares of solar power into the electric grid, reliable 
predictions of solar power production are becoming increasingly important. PV power represents 
one of the main shares of the total renewable energy, along with wind power generation (IRENA 
2019). High penetrations of PV power generation pose several challenges for the stability of the 
electric grid because of the stochastic variability of the residual electric load (i.e., the difference 
between the energy need—or load—and the distributed PV power generation, depending on 
meteorological conditions and sun position); therefore, accurate forecasting of PV power 
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generation is required for energy scheduling and for balancing demand and supply. This 
information is essential for distribution system operators and transmission system operators 
(TSOs) as well as for aggregators and energy traders (Pierro et al. 2017).  

Today, PV power prediction systems are an essential part of electric grid management in 
countries that have substantial shares of solar power generation, among which Germany is 
a paradigmatic case. For example, in 2020, Germany had an installed PV power capacity of more 
than 50 GWpeak, supplying more than 50% of the total load on sunny summer days at noon. In 
this context, and according to the German Renewable Energy Sources Act,46 TSOs are in charge 
of marketing and balancing the overall fluctuating PV power feed-in, which requires the use of 
regional forecasts for the designated control areas. Additionally, optional direct marketing of PV 
power is based on forecasts for the PV power plant’s output. PV power is first offered on the 
day-ahead auction at the European Power Exchange. Subsequently, amendments based on 
updated forecasts can be made on the intraday market, when electricity can be traded until 30 
minutes before delivery begins. Remaining deviations between scheduled and needed power are 
adjusted using balancing power. A similar procedure for California’s electricity market was 
described by Mathiesen, Kleissl, and Collier (2013). Also, Kleissl (2013) described the 
stakeholder needs from the perspective of independent system operators and energy traders. 
Hence, accurate PV power forecasts at different spatial and temporal scales are extremely 
important for cost-efficient grid integration because large errors in the day-ahead forecast can 
cause either very high or negative prices on the intraday market, and intraday forecast errors 
determine the need for costly balancing power. 

Several studies have evaluated the added value of solar irradiance forecasting for solar energy 
applications. For example, Dumortier (2009) gave a preliminary overview of such applications. 
Many other authors have detailed specific use cases and benefits of solar power forecasting. The 
following is a nonexhaustive list: 

• In the realm of electric grids, Perez et al. (2007) evaluated the operational accuracy of 
end-use forecasts and their ability to predict the effective capacity of grid-connected PV 
power plants. 

• Kaur et al. (2016) described the benefits of solar forecasting for energy imbalance 
markets. 

• The specific needs of solar forecasting for the real-time electricity market and forecasting 
requirements from the California Independent System Operator have been examined by 
Yang, Wu, and Kleissl (2019), showing that hourly forecasts could be appropriately 
downscaled to the contemplated 15-minute resolution. 

• Rikos et al. (2008), Diagné et al. (2013), and Simoglou et al. (2014) examined the solar 
power forecasting requirements to support microgrid and island systems with respect to 
stability and power quality. More specifically, Martinez-Anido et al. (2016) evaluated the 
value of solar forecast improvements for the Independent System Operator – New 
England. 

 
46 The German Renewable Energy Sources Act is a set of laws aimed at promoting renewable energy in Germany 
See “Renewable Energy,” Federal Ministry for Economic Affairs and Energy, 
https://www.bmwi.de/Redaktion/EN/Dossier/renewable-energy.html, accessed May 2017. 

https://www.bmwi.de/Redaktion/EN/Dossier/renewable-energy.html
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• At the power plant level, Marcos et al. (2013) described the benefits of power prediction 
to optimize a storage system that attenuates power fluctuations in large PV power plants. 

• Almeida, Perpiñán, and Narvarte (2015) explored the skill of a nonparametric method to 
predict the AC power output of PV power plants. 

• Wittmann et al. (2008) and Kraas, Schroedter-Homscheidt, and Madlener et al. (2013) 
used case studies to show the economic benefit of supplying direct normal irradiance 
(DNI) forecasts for the optimized operation strategies of CSP plants. 

• Schroedter-Homscheidt et al. (2013) evaluated the aerosol forecasting requirements for 
forecasts of concentrating solar electricity production. 

• Law et al. (2014) reviewed different DNI forecasting methods and their applications to 
yield forecasting of CSP plants. In a later publication, Law, Kay, and Taylor (2016) 
reviewed the benefits of short-term DNI forecasts for the CSP technology. 

• Hirsch et al. (2014) specifically evaluated the use of 6-hour forecasts (nowcasting) to 
operate CSP plants.  

In a broader context, different solar radiation forecasting approaches, targeted at various time 
horizons, have been developed using different input data and data processing methods. In the 
IEA PVPS context, the state of the art of solar forecasting has been addressed in a report for 
Task 14 (Pelland et al. 2013). A nonexhaustive list includes methods based on: 

• Statistical inference on ground-observed time-series (Huang et al. 2013; Lonij et al. 2013; 
Voyant et al. 2014; Boland and Soubdhan 2015; Graditi, Ferlito, and Adinolfi 2016) 

• Use of cloud motion vectors (CMVs) and other cloud advection techniques on data from 
all-sky cameras and satellite imagery (Hammer et al. 1999; Perez et al. 2010; Chow et al. 
2011; Marquez and Coimbra 2013; Quesada-Ruiz et al. 2014; Schmidt et al. 2016; Lee et 
al. 2017; Arbizu-Barrena et al. 2017; Miller et al. 2018) 

• Forecasts based on numerical weather prediction (NWP) models (Mathiesen and Kleissl 
2011; Lara-Fanego et al. 2012; Pelland, Galanis, and Kallos 2013; Ohtake et al. 2013; 
Perez et al. 2013; Jimenez et al. 2016a; Jimenez et al. 2016b) or even hybrid techniques 
(Marquez and Coimbra 2011; Marquez, Pedro, and Coimbra 2013; Perez et al. 2014; 
Dambreville et al. 2014; Wolff et al. 2016; Mazorra Aguiar et al. 2016). 

This chapter provides an overview of basic concepts of solar irradiance forecasting by referring 
to selected examples and operational models rather than reviewing the state of the art because 
such reviews can be found elsewhere, including in Lorenz and Heinemann (2012); Inman, Pedro, 
and Coimbra (2013); Kleissl, Schroedter-Homscheidt, and Madlener (2013), and, for PV 
applications, in Antonanzas et al. (2016). The evaluations and comparisons of different 
irradiance forecasting approaches focus on global horizontal irradiance (GHI), with DNI being 
discussed in less detail. Nevertheless, forecasting and, in particular, evaluation methods apply to 
DNI to some extent. A focus on DNI forecasting can be found in Schroedter-Homscheidt and 
Wilbert (2017). The selected examples presented below have been investigated in the context of 
the International Energy Agency (IEA) Solar Heating and Cooling Programme (SHC) Task 36 
and Task 46, and Photovoltaic Power Systems Programme (PVPS) Task 16. 

Irradiance is a key driver for solar power output, but other environmental factors—including 
ambient temperature, air humidity, wind speed, and wind direction—have a nonnegligible impact 
on the final power yield of the plant. Ambient temperature, for instance, affects the PV efficiency 
and the thermal regime of CST plants. Humidity might also have some impact on CSP systems. 
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Similarly, wind speed and especially wind gust prediction are important for preventing strong 
mechanical loads in tracking systems; therefore, the forecasting of such other ancillary factors 
will provide tangible benefits for the effective operation of power plants. Forecasts of these 
ancillary variables, however, are not discussed here. 

8.1.1 Overview of Solar Irradiance Forecasting Methods  
Depending on the specific application and requirements regarding forecast horizon and 
spatiotemporal resolution, different forecasting methods are customarily used. From short to long 
forecasting horizons, the most important solar forecasting methods are the following: 

• Intrahour forecasts with high spatial and temporal resolution: These require on-site 
observations of irradiance and/or cloud conditions that are processed using statistical 
methods and, more recently, artificial intelligence and machine learning models, such as 
neural networks, as discussed in Section 8.3. Those that are based on solar irradiance 
measurements and, for instance, conventional autoregressive techniques might provide 
meaningful forecasts even up to a few hours ahead under relatively stable sky conditions; 
however, these methods rarely have good skill under variable sky conditions, given the 
chaotic behavior of the cloud system and the limited information contained in point-wise 
observations. In these cases, the local distribution of clouds, as gathered by one or more 
ground-based sky imagers, might enhance the forecast skill. This cloud-related 
information allows for the generation of solar irradiance forecasts with a temporal 
resolution on the order of a few minutes and a spatial resolution from 10–100 m covering 
a few square kilometers around the sky imagers. The typical forecast horizon of these 
systems is from 10–20 minutes, depending on the cloud height and speed. 

• Forecasts up to 4 hours ahead: These are conventionally derived by extrapolating the 
cloud locations into the future using CMV techniques based on satellite imagery, and 
they are often referred to as nowcasts. The typical spatial resolution is from 1–5 km for 
the current generation of geostationary satellites, with forecast updates every 10–30 
minutes; see Section 8.2.1. 

• Intraday and day-ahead forecasts: These are based on NWP models, which typically 
offer higher performance for forecast horizons more than several hours and up to several 
days ahead. These models predict the evolution of the atmospheric system, including the 
formation, advection, diffusion, and dissipation of clouds. They are based on a physical 
description of the dynamic processes occurring in the atmosphere by solving and 
parameterizing the governing system of equations, and they depend on an observed set of 
initial conditions; see Section 8.2.2 for details. Current global NWP models cover the 
Earth with a spatial resolution from approximately 0.1–0.5° and a temporal resolution 
from 1–3 hours. Regional models, which are sometimes referred to as limited area 
models or mesoscale models, have a spatial resolution of a few kilometers and an 
intrahour temporal resolution in the area of interest. 

An illustration of these different forecasting methods for various spatial and and temporal scales 
is given in Figure 8-1. 

In addition to this broad classification, when historical or near-real-time on-site solar irradiance 
or PV yield observations are available, these methods can be further improved by combination 
with machine learning (hybrid methods). For NWP-based methods, particularly, model output 
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statistics (MOS) techniques are often applied; see, e.g., Yang (2019a) and Yagli, Yang and 
Srinivasan (2020). These techniques are sometimes referred to as statistical downscaling 
techniques.47 These methods learn error patterns by comparing forecasts and observations and 
use them to reduce the error of the final prediction. 

 
Figure 8-1. Illustration of different forecasting methods for various spatial and temporal scales. 
The y-axis shows the spatial resolution, and the x-axis shows the forecast horizon intended for 

the different forecasting techniques. CM-SI: cloud motion forecast based on sky imagers; CM-sat: 
cloud motion forecast based on satellite imagery. Statistical models apply to all forecast horizons. 

8.2 Empirical and Physical Solar Irradiance Forecasting Methods  
This section presents empirical and physical solar forecasting methods. Solar irradiance 
forecasting methods using statistical approaches and machine learning are described in Section 
8.3. The empirical methods introduced here rely on the correlation between the cloud structures, 
atmospheric conditions, and solar irradiance. When using satellite data to calculate solar 
irradiance with radiative transfer models, wind fields from NWP models are used for cloud 
advection. For physical solar irradiance forecasting methods, various NWP models are discussed.  

8.2.1 Irradiance Forecasting with Cloud Motion Vectors 
At timescales from a few minutes to a few hours, horizontal advection has a strong influence on the 
temporal evolution of cloud patterns, with the shape of clouds often remaining quite stable. Here, 
the spatial scale is also extremely important because small-scale cloud structures change faster than 
larger structures. In these situations, techniques for detecting clouds and their motion trajectories, 
referred to as CMV techniques, are used to provide valuable information for irradiance forecasting. 
Obviously, the performance of these forecasting methods degrades as the importance of local 
processes of cloud formation and dissipation, such as strong thermally driven convection, 
increases. 

 
47 The application of regional NWP models to global model output is known as a dynamic downscaling technique. 
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CMV-based techniques consist of the following basic steps: 

• Images with cloud information are derived from satellite- or ground-based sky-imager 
measurements. 

• Assuming stable cloud structures and optical properties, the CMVs are determined by 
identifying matching cloud structures in consecutive cloud images.  

• To predict future cloud conditions, the CMVs are applied to the latest available cloud 
image assuming cloud speed persistence. 

• Solar irradiance forecasts are calculated from the predicted cloud structures. 

 

 
Figure 8-2. Cloud information from ASI: (upper left) original image; (upper right), cloud 

decision map; and (bottom), shadow map with irradiance measurements. Sky image and 
irradiance measurements were taken in Jülich, Germany, on April 9, 2013, at 12:59 UTC in the 
framework of the HD(CP)2 Observational Prototype Experiment (HOPE) campaign (Macke and 

HOPE-Team 2014). Images from the University of Oldenburg 
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8.2.1.1 Forecasting Using Ground-Based All-Sky Imagers 
Solar irradiance forecasts at subhourly scales with high temporal and spatial resolutions can be 
derived from ground-based all-sky imagers (ASIs). Such cameras are installed horizontally and 
photograph the whole sky above them (see Figure 8-2, upper left image). ASIs are at times also 
called whole-sky imagers or sky imagers. The word imager is sometimes replaced by the term 
camera, even though they are not strictly identical. In the IEA PVPS Task 16, the term ASI is 
normally used. 

ASIs can capture sudden changes in irradiance, which are often referred to as ramps, at temporal 
scales from seconds to minutes (Figure 8-3). Cloud fields sensed from ASIs or from an assembly 
of ASIs can be resolved in high detail (e.g., 10 x 10-m resolution), allowing the partial cloud 
cover on large PV installations to be modeled and forecasted (see Figure 8-2). The maximum 
predictable horizon strongly depends on cloud conditions (i.e., cloud height and velocity), and it 
is constrained by the cloud speed and the field of view of the ASIs. This forecast horizon is 
typically in the range of 10 minutes, but it can reach 30 minutes in some cases. 

 
Figure 8-3. Example of 5-minute-ahead GHI forecast using a sky imager. Location: University of 
California, San Diego, November 14, 2012. Image from the University of California, San Diego, 

Center for Energy Research 

Currently, there is no defined standard for sky-imaging hardware, camera calibration, or image-
processing techniques. Systems in use include commercially available, low-cost, webcams or 
surveillance cameras and systems developed specifically for sky imaging; e.g., Urquhart et al. 
(2015). Most systems use digital RGB (red-green-blue) cameras with fish-eye lenses and 
therefore consider visible radiation, although some systems rather work with infrared cameras, 
which are more expensive. In particular, older RGB systems and some infrared cameras use a 
downward-looking camera that takes photos of an image of the sky that appears on a roughly 
spherical upward-looking mirror. (This is where the term imager comes from.) This concept—
unlike the smaller lens or dome of fish-eye cameras—has the disadvantage that the whole mirror 
must be cleaned. Moreover, some older systems use sun-tracked “shadowbands” to prevent the 
direct sunlight from reaching the camera. This can reduce lens flare-induced saturated areas in 
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the photos, but the shadowband also covers a noticeable part of the image. Because the required 
tracking of the shadowband entails higher costs and can lead to system failures, shaded devices 
have been uncommon in recent years.  

The operation of all ASI-based forecasts typically involves these five steps: 
1. Take images of the sky and detect which pixels show clouds and which do not. 
2. Detect the cloud motion in image series. 
3. Geolocate the clouds, including cloud height (if irradiance maps are forecasted). 
4. Project the shadow on the ground or determine whether a shadow is at the location of the 

sky imager (for the current and future cloud positions).  
5. Estimate the radiative effect of the clouds on the ideal cloudless DNI, GHI, or GTI 

(global tilted irradiance). 
Machine learning methods are used in some ASI systems for these individual tasks. Some ASI 
systems do not follow these steps and instead use machine learning methods to directly connect 
image series to the current and future GHI at the site of the camera (Pierer and Remund 2019).  

Cloud detection (which is often also referred to as cloud segmentation) from ASI observations is 
performed by evaluating different image properties. The red-to-blue ratio (RBR) or multicolor 
criteria (Kazantzidis et al. 2012) have been used as a main indicator for clouds because of their 
different spectral-scattering properties (high RBR) compared to clear-sky (low RBR) conditions 
(Shields, Johnson, and Koehler 1993; Long and DeLuisi 1998). Binary cloud decision maps 
(Figure 8-2, top right) can be derived based on threshold procedures. Evaluating the RBR in 
relation to a clear-sky library (Chow et al. 2011; Shaffery et al. 2020) has proven helpful to 
account for a nonuniform clear-sky signal over the sky hemisphere that depends on the position 
of the sun and the turbidity of the atmosphere (Ghonima et al. 2012). Cloud detection is 
particularly difficult in the circumsolar and solar disk regions because of saturated pixel 
information that have high RBR values for not only cloudy but also clear-sky conditions. High 
potential has been seen in machine learning-based segmentation (Hasenbalg et al. 2020). 

Detecting cloud motion is the next step to derive irradiance forecasts. For instance, Chow et al. 
(2011) identified cloud motion based on a normalized cross-correlation procedure—in other 
words, by maximizing the cross-correlation between shifted areas in two consecutive images. In 
contrast, Quesada-Ruiz et al. (2014) proposed a discretization method (the sector method) of the 
cloud image that helps to derive both the direction and speed of clouds. Alternatively, cloud 
movement can be analyzed by applying optical flow techniques to subsequent images (Lucas and 
Kanade 1981; Wood-Bradley, Zapata, and Pye 2012). The derived CMVs are then used to cast 
the observed cloud scenes into the future. For point-wise forecasts at the sky-imager location, 
information about cloud height is not required because the cloud movement can be 
parameterized in terms of “pixels per second.” In contrast, for applications requiring mapping 
cloud shadows, the cloud speed derived using CMVs needs to be expressed in meters per second; 
this requires knowing the cloud height, which cannot be derived using a single ASI.  

The multiple options to determine cloud height include the application of two or more ASIs, 
ceilometers, distributed radiometers, satellite methods, and NWP data. In particular, the most 
accurate information on cloud-base height directly above the instrument is currently obtained 
using ceilometers (Arbizu-Barrena et al. 2015), which are typically employed at airport weather 
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stations; however, the different clouds seen in a sky image can have different cloud heights, and 
the ceilometer measures only the cloud height directly above it. Thus, the applicability of 
ceilometers for this purpose strongly depends on the particular cloud arrangement. Retrieving the 
cloud-top height from satellite images gives spatially continuous information but shows large 
uncertainties. Different methods to determine cloud height using combined information from 
more than one ASI are described by Nguyen and Kleissl (2014) and Wang, Kurtz, and Kleissl 
(2016). Some of these methods allow deriving different cloud heights for the individual clouds 
seen in the sky image (Peng et al. 2015). Additionally, the combination of one ASI’s CMV in 
pixels per second with another device’s absolute CMV in meters per second can be used to 
determine the cloud height. Spatially distributed radiometers can be used to derive CMVs in 
meters per second, as described by Wang, Kurtz, and Kleissl (2016) and Kuhn et al. (2017a). A 
system using two ASIs can achieve higher accuracy than the application of NWP and distributed 
radiometers (Kuhn et al. 2018). 

Cloud shadow maps at the surface (see Figure 8-2, bottom) are produced by projecting the 
forecasted cloud scenes with their assigned height using information about the position of the sun 
and a digital elevation model. The impact of the projection method on solar forecast accuracy 
can be large. Local irradiance or PV power measurements can be used to estimate the effect of 
the clouds on irradiance or PV power. Urquhart et al. (2013) analyzed the frequency distributions 
of PV power normalized to clear-sky conditions to determine a clear and a cloudy mode and to 
assign them to shaded and unshaded cells, respectively. Schmidt et al. (2016) used the clear-sky 
index derived from pyranometer measurements to determine the forecasted all-sky GHI. 
Similarly, Blanc et al. (2017) used the beam clear-sky index determined from the last 30 minutes 
of pyrheliometer measurements to derive the cloud transmittance. Additional information on 
cloud type in the monitored scene indicates cloud optical thickness and cloud height and can be 
obtained with cloud classification algorithms or by using infrared and thermographic sky 
imagers. Ghonima et al. (2012) proposed a method to differentiate thin and thick clouds for 
various atmospheric conditions using a clear-sky library. Gauchet et al. (2012) proposed using a 
regression model in combination with a clear-sky model to estimate the surface solar irradiance 
from segmented sky images with information about clear-sky areas; bright and dark clouds; 
circumsolar area; and solar disk. This specific segmentation is made to optimally accommodate 
various luminance thresholds. 

Instead of using only one or a few ASI systems, networks of approximately 10 or more ASIs can 
be created to increase the spatial coverage, the forecast horizon, and the accuracy of 
observations. The combination of several ASIs can provide a more accurate 3D reconstruction of 
the cloud field (Mejia et al. 2018). Also, the combination of several ASI-derived irradiance maps 
or intermediate results (e.g., segmentation and cloud height) can be used to improve the nowcasts 
(Blum et al. 2019). In addition to irradiance nowcasting, ASIs have many other applications that 
are relevant to meteorology and solar energy. Deriving GHI and/or DNI from sky images is 
discussed by Schmidt et al. (2016), Chauvin et al. (2018), Kurtz and Kleissl (2017), and Gauchet 
et al. (2012). Estimating the sky radiance distribution is also possible (Chauvin et al. 2015). 
Further, the aerosol optical depth (AOD) can be retrieved from ASIs as well (e.g., Olmo et al. 
2008 and Kazantzidis et al. 2017). 

Another camera-based nowcasting method uses so-called shadow cameras installed at elevated 
positions, such as on towers or mountains, that take images of the ground around their position 
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(Kuhn et al. 2017a). In such photos, cloud shadows can be detected, and the brightness of the 
pixels contains information on the irradiance at the pixel of interest. Unlike ASIs, these systems 
have the advantage that no modeling of the clouds is required to obtain irradiance maps; however, 
the development of shadow-camera systems is still in an early phase compared to ASI systems. 

8.2.1.2 Satellite-Based Forecasts 
Forecasts up to approximately 6 hours ahead require wide-area observations of cloud fields. For 
example, assuming a maximum cloud velocity of 160 km/h, a region of approximately 2,000 km 
by 2,000 km would need to be monitored if the goal is to track any arriving cloud 6 hours ahead. 
Satellite data with broad coverage are appropriate sources for these horizons. 

Cloud and irradiance information from satellite images can be derived by a variety of methods 
(see Chapter 4). In principle, all of them can be applied to cloud predictions using CMVs to 
obtain forecasts of solar irradiance. In addition, multiple methods exist to derive CMVs, as 
described in Section 8.2.1.1 for ASIs. Methods to calculate CMVs from satellite images have 
also been developed and are routinely used in operational weather forecasting, where CMSs are 
used to describe wind fields at upper levels in the atmosphere in NWP models. 

Satellite-based nowcasting schemes for solar irradiance forecasts have been developed mostly in 
the past decade based on CMVs or sectoral cloud tracking (Hammer et al. 2003; Schroedter-
Homscheidt and Pulvermüller 2011). The satellite-based forecasting scheme from the University 
of Oldenburg in Germany (Lorenz, Hammer, and Heinemann 2004; Kühnert, Lorenz, and 
Heineman 2013) is introduced here as an example of such a system. It uses images of the 
geostationary Meteosat Second Generation (MSG) satellites (see Chapter 4). The semiempirical 
HELIOSAT method (Hammer et al. 2003) is applied to obtain information about clouds and 
irradiance. A characteristic feature of the method is the dimensionless cloud index, which 
provides information about cloud transmittance. 

CMVs are derived by identifying corresponding cloud patterns in two consecutive images 
(Figure 8-4). Rectangular areas—the “target areas”—are defined with an approximate size of 90 
km by 90 km. This is large enough to contain information about temporally stable cloud 
structures and small enough that cloud motion for this area can be described by a single vector. 
Mean square pixel differences among target areas in consecutive images (n0 and n-1) are 
calculated for displacements in all directions (Figure 8-4, a–c). The maximum possible 
displacement (“search area”) is determined by the maximum wind speeds at typical cloud 
heights. The displacement that yields the minimum mean square pixel difference for a given 
target area is assigned as a motion vector (Figure 8-4, d). The derived motion vectors are applied 
to the cloud index image, n0, to predict future cloud conditions. A smoothing filter is applied to 
the predicted cloud index image to eliminate randomly varying small-scale structures that are 
hardly predictable. Finally, solar irradiance is derived from the predicted cloud index images 
using the HELIOSAT method (see Chapter 4). 

The SolarAnywhere short-term forecasting scheme (Perez and Hoff 2013) for the United States 
is based on Geostationary Operational Environmental Satellite (GOES) imagery and follows 
a similar approach to detect cloud motion. It is also based on a semiempirical cloud index 
method (see Chapter 4). In parallel, Solargis has developed a CMV short-term forecasting 
scheme that is run under the principles just described but incorporates a multiresolution 
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treatment of cloud structures. Another method—presented by Schroedter-Homscheidt and 
Pulvermüller (2011)—discriminates between tracking optically thin cirrus and tracking optically 
thick cumulus or stratus with respect to the need for increased accuracy in direct irradiance 
nowcasting aimed at concentrating technologies. 

Müller and Remund (2014) proposed a method that combines cloud index values retrieved from 
MSG satellites with wind fields from a NWP model. The wind fields are predicted with the 
Weather Research and Forecasting (WRF) model (Skamarock et al. 2005) with hourly resolution 
and are applied to the forward propagation of the observed cloud patterns from the satellite 
imagery. Information about the height of the monitored clouds is needed to determine the 
corresponding NWP model’s pressure level. Müller and Remund (2014) assumed fixed cloud 
heights for this purpose. An advantage of the application of NWP wind fields over satellite-
derived CMVs is the potential to describe changes in the direction and speed of cloud movement 
during the extrapolation process. 

 
Figure 8-4. Schematic representation of the CMV derivation using satellite images. Images 

reproduced from Kühnert et al. (2013) 

A method for satellite-based short-term forecasting using a physical cloud and irradiance 
retrieval scheme was introduced by Miller, Heidinger, and Sengupta (2013) and Miller et al. 
(2018). The method processes GOES satellite observations with the National Oceanic and 
Atmospheric Administration (NOAA) Pathfinder Atmospheres Extended (PATMOS-x) retrieval 
package (Heidinger et al. 2014), which is a stand-alone radiative transfer code, and combines 
them with wind field data from the Global Forecast System (GFS) model. Cloud properties are 
retrieved with PATMOS-x in a first step. Next, the cloud fields are advected using GFS winds at 
the vertical level matching the cloud-top height as retrieved from PATMOS-x. Finally, solar 
irradiance at the surface is calculated with radiative transfer calculations using predicted cloud 
properties and additional atmospheric parameters. 
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Another satellite-based irradiance scheme that is based on cloud physical properties (CPPs) is the 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) CPP method, which uses the SEVIRI 
instrument onboard the MSG satellites. The method is based on advecting the cloud properties 
and is used to forecast both GHI and DNI. Details about the CPP surface solar forecasting 
algorithm and its evaluation are presented by Wang et al. (2019). The forecast horizon of this 
method is from 0–4 hours at a 15-minute temporal resolution. The forecast has been tested over 
the Netherlands at a spatial resolution of approximately 4 km by 6 km. CMVs are derived from 
three cloud properties (cloud top height, cloud optical thickness, and particle effective radius) 
with a method adapted from the weather radar precipitation forecast system of the Royal 
Netherlands Meteorological Institute (KNMI). The advected cloud properties are used as input 
for the CPP-SICCS (Surface Insolation under Clear and Cloudy skies derived from SEVIRI 
imagery) algorithm to calculate the surface solar irradiance.  

8.2.2 Irradiance Forecasting with Numerical Weather Prediction 
NWP models are routinely operated by weather services to forecast the state of the atmosphere. 
Starting from initial conditions that are derived from routine Earth observations from worldwide 
networks of ground, airborne, and spaceborne sensors, the temporal evolution of the atmosphere 
is simulated by solving the equations that describe the physical processes occurring in the 
atmosphere. Such physical modeling is the only feasible approach when there is little correlation 
between the actual observations and the forecasted values, which is typically the case for time 
horizons longer than approximately 5 hours ahead. A comprehensive overview of NWP 
modeling was given by Kalnay (2003). 

Global NWP models predict the future state of the atmosphere worldwide. To determine the 
initial state from which an NWP model is run, data assimilation techniques are applied to make 
efficient use of worldwide meteorological observations (Jones and Fletcher 2013). These include 
observations from ground-based weather stations, buoys, and spaceborne sensors (i.e., satellites). 
The simulation with NWP models involves spatial and temporal discretization, and the resolution 
of this discretization determines the computational cost of the simulation. In addition, many 
physical processes occur on spatial scales much smaller than the grid size—including, for 
example, condensation, convection, turbulence, as well as scattering and absorption of shortwave 
and longwave radiation. The effect of these unresolved processes on the mean flow at the 
model’s grid size is evaluated with the so-called parameterizations of atmospheric physics. They 
include interactions of the land and ocean with the atmosphere, vertical and temporal 
development of the planetary boundary layer, cumulus triggering and cloud microphysics, as 
well as shortwave and longwave radiation. The physical parameterizations are a key component 
of the prediction with NWP models. They bridge the small-scale and large-scale processes, and 
they make possible the convergence of the numerical routines that solve the physical equations. 
Today, global NWP models are run by approximately 15 national and international weather 
services, and their resolutions range from approximately 10 km to approximately 50 km. The 
temporal resolution of the global model outputs is typically 1 or 3 hours, and their forecasts are 
normally updated every 6 or 12 hours.  

Mesoscale or regional models cover only a limited area of the Earth. They take the initial 
and lateral boundary conditions from a previous global NWP model run and bring the spatial and 
temporal grid of the global NWP model down to a finer resolution. Weather services typically 
operate mesoscale models with a spatial resolution ranging from 1–10 km, and they provide 
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hourly forecasts, though higher resolutions are feasible. Compared to global models, the higher 
spatial resolution of mesoscale models allows for explicit modeling of small-scale atmospheric 
phenomena. 

For irradiance forecasting, the parameterizations of radiation transfer and cloud properties are of 
special importance. Larson (2013) compared the respective model configurations with respect to 
GHI for four operational NWP models, including the Integrated Forecast System (IFS) of the 
European Center for Medium-Range Weather Forecasts (ECMWF) and the Global Forecast 
System (GFS) run by NOAA. In particular, Larson (2013) discussed deep and shallow cumulus 
parameterizations, turbulent transport, stratiform microphysics and prognosed hydrometeors, 
cloud fraction and overlap assumptions, aerosols, and the shortwave radiative transfer schemes. 
But Larson (2013) emphasized that “because of the strong feedback and interactions of physical 
processes in the atmosphere,” other processes might have a significant impact on irradiance 
forecasting. 

Today, most NWP models offer GHI as direct model output, and some also provide forecasts of 
direct and diffuse irradiance. Although in principle direct model output can be used for solar 
energy applications, in practice additional post-processing is customarily applied to improve 
forecast accuracy. 

8.2.2.1 Examples of Operational Numerical Weather Prediction Models 
This section describes some examples of NWP models enumerated together with their 
spatial resolutions and output time intervals. In particular, it highlights cloud fraction 
parameterizations and radiation schemes. Additionally, specific references are provided with respect 
to the application and evaluation of irradiance forecasts in the context of solar energy applications. A 
comparison of GHI forecasts based on these models was described by Lorenz et al. (2016) for 
Europe and by Perez et al. (2013) for the United States, Canada, and Europe. It should be 
emphasized that the sample of operational models and applications given here is non-exhaustive; it 
simply summarizes the research experience and lessons learned from some research completed 
within the frameworks of the IEA SHC Task 36 and Task 46 and the IEA PVPS Task 16. 

The IFS of the ECMWF is a global model currently being operated with a horizontal grid spacing 
of approximately 12 km and 137 vertical levels for high-resolution deterministic forecasts. 
Operational output is available with a temporal resolution of 3 hours and up to 6 days ahead, with a 
higher resolution of 1 hour being accessible in the framework of research projects. The model is 
cycled every 12 hours. The radiation code is based on a version of the Rapid Radiation Transfer 
Model for General Circulation Models (RRTMG) that has been specially developed for use in 
NWP models (Mlawer et al. 1997; Iacono et al. 2008). Cloud-radiation interactions are taken into 
account in detail by using the values of cloud fraction and liquid, ice, and snow water content from 
the cloud scheme using the Monte Carlo Independent Column Approximation (McICA) method 
(Pincus, Barker, and Morcrette 2003; Morcrette et al. 2008). McICA uses a stochastic approach to 
infer the cloud extinction of shortwave and longwave solar radiation from only a random selection 
of calculations. The prognostic scheme for clouds and large-scale precipitation is based on Tiedtke 
(1993). The ECMWF irradiance forecasts were analyzed by Lorenz et al. (2009) with respect to 
different relevant properties for PV power prediction applications. In addition, Lorenz et al. (2011) 
proposed and evaluated an approach based on the ECMWF forecasts for regional PV power 
prediction for improved electric grid integration.  
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NOAA’s GFS is currently being operated at a spatial resolution of approximately 13 km and 64 
vertical levels; however, the outputs are provided in a regular latitude/longitude grid with a 
resolution of 0.25º and 46 levels, with hourly resolution up to 120 hours ahead and 3-hour 
resolution up to 240 hours ahead. The model is cycled every 6 hours. Model physics related to 
clouds and radiation were summarized by Larson (2013). Note that cloud fraction is a diagnostic 
variable in the GFS model in contrast to the IFS model. Mathiesen and Kleissl (2011) compared 
intraday GHI forecasts of the GFS and IFS forecasts from the ECMWF and the North American 
Model. 

Environment Canada’s Canadian Meteorological Centre operates the Global Environmental 
Multiscale (GEM) model. It is run in different configurations, including a regional deterministic 
configuration (Mailhot et al. 2006) that generates forecasts up to 48 hours ahead at a 7.5-minute 
time step and with a spatial resolution of approximately 15 km centered at the grid. Pelland, 
Galanis, and Kallos (2013) investigated solar irradiance and PV power forecasting with post-
processing applied to the high-resolution GEM forecasts.  

The mesoscale (or regional) WRF model (Skamarock et al. 2005) was developed in the 
framework of a long-term collaborative effort of several institutes led by the National Center for 
Atmospheric Research (NCAR) in the United States. Now it is a community model, meaning it 
is publicly and freely available and can receive contributions from all participants. The WRF 
model is nonhydrostatic, has multiple nesting capabilities, and offers several schemes for each 
different parameterization of the atmospheric physical processes. This allows the WRF model to 
be adapted to widely different climate conditions and different applications over virtually any 
region of interest. The shortwave radiation parameterization usually runs the Dudhia (1989) 
scheme; however, the latest version of the WRF model includes up to eight different shortwave 
parameterization schemes (v. 3.9, 2017). This includes the RRTMG radiative scheme already 
mentioned for the ECMWF’s IFS model but also other advanced and research-class radiative 
models, such as the New Goddard shortwave radiation scheme of the WRF model (Chou and 
Suarez 1999), the NCAR Community Atmosphere Model (Collins et al. 2004), the Fu-Liou-Gu 
model (Gu et al. 2011), and the Fast All-sky Radiation Model for Solar applications (FARMS) 
model (Xie, Sengupta, and Dudhia 2016). The user can select any of these schemes. The current 
WRF model’s cloud fraction schemes are diagnostic. The impact of the resolved topography on 
the downward solar radiation can be optionally included in the computations. The direct aerosol 
impact can also be modeled using built-in climatologies or inputs from the user. 

The ability of the WRF model and its precursor, the fifth generation of the Penn State 
University/NCAR Mesoscale Model (MM5), to produce solar radiation forecasts have been 
evaluated (Guichard et al. 2003; Zamora et al. 2003; Zamora et al. 2005; Ruiz-Arias et al. 2008; 
Wen et al. 2011). More recently, and mostly toward solar energy applications, the WRF model 
has been extensively evaluated. For instance, within the framework of the IEA SHC Task 36 and 
Task 46, Lara-Fanego et al. (2012) evaluated 3-day-ahead hourly and 10-minute WRF model 
forecasts of GHI and DNI in Spain. Perez and Hoff (2013) conducted a benchmarking study of 
multiple NWP models, including the WRF model, at a number of European and North American 
radiometric sites. Lorenz et al. (2016) compared the GHI predictions of multiple models, 
including the WRF model, and various model configurations against irradiance measurements in 
Europe. Many other studies from the last few years have evaluated the model over different 
worldwide regions, including Isvoranu and Badescu (2015) in Romania; Zempila et al. (2016) in 
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Greece; Aryaputera, Yang, and Walsh (2015) in Singapore; He, Yuan, and Yang (2016) in 
China; Lima et al. (2016) in Brazil; Gueymard and Jimenez (2018) in Kuwait; and Sosa-Tinoco 
et al. (2016) in Mexico. 

Other studies have analyzed the causes of model errors, and some studies have proposed 
improvements. For instance, Mathiesen, Collier, and Kleissl (2013) proposed a direct cloud 
assimilation technique tailored for the WRF model to improve its representation of clouds along 
the California coastline for improved solar radiation forecasts. Ruiz-Arias et al. (2013) performed 
surface clear-sky shortwave radiative closure intercomparisons of various shortwave radiation 
schemes, including the RRTMG, Goddard, and Dudhia models, in which RRTMG showed the 
highest performance, whereas some deficiencies were found in the the Goddard radiative scheme. 
A correction for these deficiencies was proposed by Zhong, Ruiz-Arias, and Kleissl (2016). Ruiz-
Arias, Dudhia, and Gueymard (2014) proposed a parameterization of the shortwave aerosol optical 
properties for surface direct and diffuse irradiances assessment. And Ruiz-Arias et al. (2015) 
described problems with WRF when simulating convective clouds in the Iberian Peninsula and 
highlighted the need for a dedicated shallow cumulus scheme to reduce model biases. 

An important milestone in the use of the WRF model for solar radiation applications has been the 
recent development of WRF-Solar, a dedicated suite of WRF model parameterizations for solar 
radiation forecasting (Deng et al. 2014; Ruiz-Arias, Dudhia, and Gueymard 2014; Thompson and 
Eidhammer 2014) within the U.S. Department of Energy’s Sun4Cast project (Haupt et al. 2016). 
Some of these improvements, and others, have been summarized by Jimenez et al. (2016b). 
Moreover, the Sun4Cast project has contributed to the development of the Multisensor Advection 
Diffusion nowCast (MADCast) system (Descombes et al. 2014), which is a particular 
configuration of the WRF model for fast assimilation of satellite reflectance images. That 
configuration can be used to obtain a proxy field to cloud fraction that can be subsequently 
advected in WRF and used to compute solar radiation nowcasts. Lee et al. (2017) presented 
a comparative evaluation of WRF-Solar, MADCast, and satellite-based forecasts and found that 
WRF-Solar performed generally well at predicting GHI under challenging situations in California. 

The WRF model is operated for solar irradiance forecasting at several public and private entities, 
including Solargis (Slovakia); Meteotest (Switzerland); GL-Garrad Hassan (Mathiesen, Kleissl, 
and Collier 2013); the Atmospheric Sciences Research Center of the University of Albany as part 
of the operational air quality forecasting program; and AWS Truepower, a UL company in the 
United States. 

The High Resolution Limited Area Model (HIRLAM)48 is a hydrostatic regional NWP model 
operated by several national meteorological services in Europe, including the Spanish National 
Weather Service and the Danish Meteorological Institute. The Spanish National Weather Service 
runs HIRLAM four times daily in three spatial configurations (one covering Europe at a 
resolution of 16 km and two covering Spain and the Canary Islands at a resolution of 5 km) with 
40 vertical levels. The Danish Meteorological Institute runs its highest-resolution HIRLAM 
model, “SKA,” for an area covering Northwestern Europe with a grid size of 0.03° (≈3 km) and 
65 vertical levels. HIRLAM uses the clear-sky irradiance scheme of Savijärvi (1990) and the 
cloud scheme of Wyser, Rontu, and Savijärvi (1999). The nonhydrostatic HIRLAM ALADIN 

 
48 See http://www.hirlam.org.  
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Regional Mesoscale Operational NWP In Europe (HARMONIE) regional model is being run 
experimentally by the Spanish National Weather Service daily over Spain and the Balearic 
Islands at a resolution of 2.5 km, with 65 vertical levels. Closely related to HARMONIE and 
HIRLAM is the STRÅNG mesoscale model,49 which provides hourly nowcasts of GHI, DNI, 
erythemal ultraviolet, photosynthetically active radiation, and sunshine over Scandinavia at 2.5-
km resolution. 

The German Weather Service (Deutscher Wetterdienst, or DWD) has an operational model chain 
consisting of the global model ICON (ICOsahedral Nonhydrostatic); the ICON-EU, which is the 
nested European regional model; and the regional model for Germany called COSMO-D2. The 
horizontal resolution of the ICON model is 13 km, and it has 90 model layers extending to 75 km 
(Zängl et al. 2014). The ICON-EU is nested via a two-way interaction. It has a horizontal model 
resolution of approximately 7 km and 60 model layers up to a height of 22.5 km. The third model 
is the regional nonhydrostatic COSMO-D2 model, which has a horizontal resolution of 2.2 km 
and 65 vertical levels. The COSMO model was developed by the Consortium for Small-
scale Modeling (COSMO), which consists of the national meteorological services of Germany, 
Greece, Italy, Poland, Romania, Russia, and Switzerland. The COSMO-D2 (Baldauf et al. 2011) 
is a model for short-term forecasts of +27 hours, except for the 03:00 UTC run, which has a 
forecast length of +45 hours. The radiation scheme in the ICON and ICON-EU is currently 
called once per hour; however, the radiative transfer scheme of Ritter and Geleyn (1992) is 
called every 15 minutes within COSMO-D2. Thus, the direct and diffuse radiation predictions 
are available every 15 minutes via direct model output. Using the regional COSMO model, 
DWD performed a statistical analysis to detect those days with the highest forecast error in 
Germany, and they identified that NWP forecasts have frequent errors in the presence of low 
stratus. To address those situations, they proposed a low stratus-detection method that 
operationally uses post-production. 

Another example is NOAA’s High-Resolution Rapid Refresh (HRRR) model for the United 
States, which provides forecasts at 3-km by 3-km resolution with hourly updates. 

Finally, the “SKIRON” regional weather forecasting system (Kallos 1997) is operated for solar 
energy applications at the National Renewable Energy Centre of Spain (Gastón et al. 2009). 

8.3 Irradiance Forecasting Based on Irradiance Time Series and Post-
Processing with Statistical and Machine Learning Methods 

Statistical learning models are widely used for solar irradiance and power forecasting. 
The dependence between input variables (predictors) and forecast values (predictands) is 
established in a training phase by learning from historical data, assuming that patterns in 
the historical data sets are repeated in the future and thus might be exploited for forecasting. 
Statistical methods include classical regression methods, such as autoregressive and autoregressive 
integrated moving average models as well as machine learning or artificial intelligence techniques, 
such as artificial neural networks (ANNs), k-nearest neighbors, or support vector regression. 
Coimbra and Pedro (2013a), Diagné et al. (2013), and Yang et al. (2018) provided an overview of 
different statistical approaches used for solar irradiance forecasting. Voyant et al. (2017) and Sobri 

 
49 See http://strang.smhi.se/.  
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et al. (2018) reviewed the topic with a heavy focus on the use of machine learning methods for 
solar radiation or power forecasting as well as for post-processing. 

Statistical and machine leaning models are applied for different purposes in irradiance and PV 
power forecasting. Pure time-series approaches aim to derive solar irradiance or power forecasts 
based solely on local measurements without involving any physical modeling (i.e., time-series 
approaches with no exogenous input). They are suitable for forecast horizons from several 
minutes to several hours ahead. 

Statistical and machine learning methods also play an important role in enhancing the output of 
NWP models and CMV forecasts. Regardless of the physics-based forecasting model used, 
errors that are partly stochastic and partly systematic will always remain. These errors can be 
reduced with statistical learning based on historical data sets of predicted and measured 
irradiance or PV power. Further, statistical learning methods can be employed to derive 
quantities not included in the native model output. Different terminology is used for this 
combination of statistical and physical forecasting methods, depending on the perspective of the 
researchers. The community of statistical modeling and artificial intelligence refers to these 
models as statistical models with exogenous input. Meteorologists commonly use the terms 
statistical post-processing or, more specifically, model output statistics (MOS) in the context of 
NWP, which is the terminology adopted here.  

Section 8.3.1 provides an overview of selected machine learning models, and Section 8.3.2 
addresses pure time-series models based on irradiance measurements. Finally, Section 8.3.3 
describes the application of statistical and machine learning models for post-processing. 

8.3.1 Examples of Machine Learning Models Applied for Forecasting 
The use of state-of-the-art machine learning models is popular in irradiance as well as in PV 
power forecasting. This section lists several approaches discussed by Winter et al. (2019). 

8.3.1.1 Artificial Neural Networks 
ANNs constitute one of the most versatile machine learning methods and are known for their use 
in complex tasks such as image or speech recognition (LeCun et al. 1989; Sak and Beaufays 2014).  

As described by Bishop (1995), an ANN consists of a fixed number of nodes, called units, that 
can take on numerical values and are arranged in several layers. The input layer contains one unit 
for each feature of the data set, whereas the output layer, in case of a single regression problem, 
is only one unit. The layers between the input and output layers are referred to as hidden layers. 
The key task is to establish a connection between the nodes by assigning to each unit in one layer 
the weighted sum of the previous layer’s units, and to then apply a nonlinear activation function. 
In the case of a regression problem, a linear activation function is applied to the weighted sum of 
the output unit. 

By training an ANN on a given set of input and output data, all its weights are adjusted to 
minimize an error function, typically the mean square error (MSE). This is usually done by back-
propagation, an iterative process for calculating the gradient of the error function with respect to 
each weight (Rumelhart, Hinton, and Williams 1986). In each step, the weights get updated by 
using a gradient descent optimization algorithm. An alternative option is the method of adaptive 
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moment estimation, or “Adam,” as described by Kingma and Ba (2015). Instead of calculating 
the gradient of the error function with respect to the full data set, in each step the weights can be 
updated only with respect to a subset of the data set (see Bottou 1998; Ruder 2016). The weights 
can be initialized using a common heuristic described by Glorot and Bengio (2010). 

To enable an ANN to learn nonlinear relationships between input and output, a nonlinear 
activation function must be chosen. For example, the leaky rectified linear unit activation 
function can be used (Maas, Hannun, and Ng 2013). 

8.3.1.2 Extreme Learning Machines 
An extreme learning machine, as proposed by Huang, Zhu, and Siew (2006), is an ANN with a 
single hidden layer between the input and output layers. Its learning method does not rely on 
gradient descent. Instead, the weights between the input and hidden layers are chosen randomly. 
In this way, only the weights between the hidden and output layers need to be determined. 
Because this is just a linear regression problem, an analytic solution exists, which can be 
calculated directly without an iterative optimization algorithm. Hence, training the model is 
considerably faster while maintaining good performance of the model. 

8.3.1.3 Gradient Boosted Regression Trees 
Gradient boosted regression trees are an ensemble technique using multiple classification and 
regression trees (CART) (Breiman et al. 1984). The CART algorithm creates binary decision 
trees, which means that at each new node the data is split into two parts according to a threshold 
value. Starting with a root node, which in general contains all training data, the tree grows until 
some stop condition is reached. The last nodes form the tree’s leaves. Each splitting leads to 
either another node or a leaf. The leaf contains the class to be predicted. In the case of regression, 
a leaf returns the mean value of the training samples it contains. 

The principle of boosting is described by Friedman (2001). Starting with a single CART tree that is 
fit to minimize the MSE on the training data, the following trees are trained consecutively so that 
each new tree predicts the residual error. This residual error is proportional to the gradient of the 
MSE. By scaling the new tree’s prediction with a step size between 0 and 1 and by adding it to the 
current ensemble, every new tree aims to further reduce the MSE of the ensemble’s prediction. 

8.3.1.4 Random Forest 
A random forest is another technique based on ensembles of CARTs and is presented by 
Breiman (2001). The ensemble’s prediction is the average over all single tree predictions. Each 
tree is trained on a bootstrap data set generated by randomly drawn samples with replacement 
from the original data set (Efron 1979). Further, for each node split, only a random subset of 
features is considered. By omitting data randomly, the resulting trees become less correlated. 
This lowered correlation of single trees has been observed to reduce the model error. 

8.3.2 Time-Series Models Based on Measurements  
Intrahour or hours-ahead solar irradiance and PV power forecasting with time-series models use 
recent measurements of irradiance or PV power as a basic input, possibly complemented by 
measurements of other variables. Examples are the application of a coupled autoregressive and 
dynamic system model for forecasting solar radiation on an hourly timescale, as described by 
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Huang et al. (2013); the comparison of ANN and classical time-series models. as by Reikard 
(2009); and the short-term PV power prediction approach of Bacher, Madsen, and Nielsen 
(2009). Through their review of machine learning methods, Voyant et al. (2017) concluded that 
although ANN and autoregression-style methods still dominate statistical forecasting, other 
methods (e.g., support vector regression, regression tree, random forest, and gradient boosting) 
are increasingly being used. Although the ranking of such methods is complicated by many 
factors, it generally holds that a multi-model approach results in improvement in forecasting 
performance (Zemouri, Bouzgou, and Gueymard 2019). 

For any statistical model, the selection and availability of appropriate input variables as well as the 
optimized preprocessing of the data is of critical importance for good forecast performance. Also, 
the choice of the model configuration (e.g., the ANN architecture or the selection of 
hyperparameters in machine learning models) is essential. Finally, the setup of the training sample 
(e.g., the number of days and sites used for the training) has a noteworthy influence on the forecast 
accuracy. Coimbra and Pedro (2013a) showed the benefits of the application of a generic algorithm 
to identify the most suitable ANN architecture, preprocessing scheme, and training data.  

The advantages and limits of purely statistical approaches are discussed next. High-quality 
measurements of the actual surface solar irradiance or PV power are the best possible starting 
point for any forecast. In comparison, the assessment of the initial irradiance conditions (i.e., the 
irradiance analysis) with an empirical or physical forecasting model shows considerably higher 
uncertainties. Any physics-based forecasting model has an inherent uncertainty, regardless of the 
forecast horizon, that is caused by limits in spatial and temporal resolution, uncertainty in input 
parameters, and simplifying assumptions within the model. Time-series models exploit the 
autocorrelation in time series of solar irradiance, cloud cover and, possibly, other explanatory 
variables. For very short-term forecast horizons, forecasts based on accurate on-site 
measurements and statistical methods reach forecast errors that are smaller than even the NWP 
analysis errors or the initial errors of irradiances derived from satellite images. 

Given the inherent chaotic nature of weather phenomena, any existing autocorrelation decreases 
as the time lag between time-series instances increases. Hence, the performance of these models 
is (1) strongly determined by the underlying autocorrelation of each particular weather condition 
and (2) decreases as forecast lead time increases. For longer forecast horizons, wide-area 
observations (e.g., those from satellites) or physical models (e.g., NWP models) are required to 
meet the forecast skill requirements.  

Pure time-series approaches are typically applied to forecast horizons ranging from several minutes 
to a few hours ahead. Evidently, their performance in comparison to other methods strongly 
depends on the prevailing climate and weather conditions (e.g., the stability of the sky situation), 
the spatiotemporal resolution of the forecasts, and the models to which they are compared. 

In this context, Bacher, Madsen, and Nielsen (2009) compared an autoregressive model for 
hourly solar power forecasting combined with and without exogenous inputs from a diverse 
origin. The study was based on PV plants in Denmark, and the authors found that ground-
observed data are the most important class of inputs up to approximately 2 hours ahead, whereas 
the NWP forecast parameters are adequate for next-day horizons. A comparison of pure time-
series models with satellite-based CMV forecasts was given by Wolff et al. (2016) for PV 
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systems in Germany. The authors found that CMV forecasts outperformed the time-series 
approach for forecast horizons more than 30 minutes ahead for single sites and for forecast 
horizons of more than 2 hours ahead for the German average.  

Further, sky camera imagery-based forecasting methods were demonstrated to be valuable for 
short-term high-resolution forecasting. Pedro et al. (2018) and Huang et al. (2019) assessed 
intrahour hybrid forecasting models that combine statistical (or machine learning) methods with 
information extracted from sky imagery and found substantial improvements. Huang et al. 
(2019) proposed the conditional autoregressive method of clear-sky index, which can separate 
and model characteristic weather events through the identification of key condition variables. 
Based on high-frequency data measured in Australia, it was shown that by adding exogenous 
forecasts derived from sky imagery, their hybrid model could produce accurate forecasts 
seamlessly across timescales from 10 seconds to 10 minutes ahead. 

8.3.3 Statistical Post-Processing Methods 
Statistical post-processing (or machine learning with exogenous input) plays an important role in 
irradiance and PV power forecasting. Post-processing methods are applied to: 

• Reduce model errors by considering unaccounted or partially accounted local and 
regional effects (e.g., topography and aerosols) 

• Combine the outputs of different models  
• Derive quantities that are not direct model outputs. 

In what follows, various statistical post-processing methods are summarized for the possible 
applications enumerated. 

8.3.3.1 Model Output Statistics to Reduce Forecast Errors 
MOS are widely used to refine the output of NWP models, primarily to account for local 
variations in weather and surface conditions (Glahn and Lowry 1972). They use measurements 
and/or climatology for specific locations as a basis to adapt the forecasts. For example, MOS 
techniques constitute a powerful tool to adapt the results from NWP or satellite-based models to 
site-specific conditions (Gueymard et al. 2012). For solar irradiance forecasting, satellite-derived 
values might be used in lieu of ground measurements. The set of predictors consists of NWP 
output and might be extended by including any relevant information—for example, prior 
observations or climatological values.  

Originally, the term model output statistics was associated with the use of regression equations; 
however, a generalization of this concept now involves other statistical approaches. Lorenz et al. 
(2009) applied a bias correction MOS based on solar elevation and clear-sky index to ECMWF 
irradiance forecasts. Kalman filters have also been proposed by Pelland, Galanis, and Kallos (2013) 
to improve irradiance forecasts of the Canadian GEM model and by Diagné et al. (2014) in the case 
of WRF model solar irradiance forecasts. Marquez and Coimbra (2011) investigated the application 
of ANNs to predicted variables from a weather forecasting database, and Gastón et al. (2009) used a 
machine learning algorithm to enhance SKIRON solar irradiance forecasts. Pierro et al. (2015) 
proposed a MOS technique to correct WRF-based GHI forecasts by coupling two intermediate MOS 
consisting of correlations with relative humidity and ANNs, respectively. Other powerful post-
processing approaches have been thoroughly reviewed by Yang and van der Meer (2021). 
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8.3.3.2 Combination of Forecast Model Outputs 
Combining the output of different models can considerably increase the forecast accuracy. First, 
simple averaging is beneficial for models with similar accuracy, exploiting the fact that forecast 
errors of different models are usually not perfectly correlated (Perez et al. 2013; Lorenz et al. 2016). 

Combining methods using more advanced techniques might also account for strengths and 
weaknesses of the different models for certain situations—for example, by adapting the 
contribution of each model depending on the weather situation. In particular, they might be 
applied to establish a forecast consensus covering horizons from several minutes to several days 
ahead by integrating measurements, climate monitoring, and NWP forecasts. Various approaches 
to this aim have been proposed. For instance, Lorenz and Heinemann (2012) used a weighted 
average with weights optimized for each forecast horizon. Sanfilippo et al. (2016) applied a 
multi-model approach to solar forecasting that uses supervised classification of forecasting 
evaluation results to select the best predictions from persistence, support vector regression, and 
diverse stochastic models. Wolff et al. (2016) and Mazorra Aguiar et al. (2016) combined 
forecasts based on support vector regression machines and ANNs respectively. Yang et al. 
(2017) used a hierarchical scheme and minimization of the trace of the forecast error covariance 
matrix. Within the context of the Sun4Cast project, NCAR’s DICast system (Myers et al. 2011, 
2012) has been applied to blend multiple solar radiation forecasts. This system—which has 
already been applied in other forecasting areas, such as transportation, agriculture, and wind 
energy—consists of a two-step process: (1) a statistical bias correction process using a dynamic 
MOS and (2) optimization of the model blending weights for each lead time (Haupt et al. 2016).  

8.3.3.3 Post-Processing to Derive Additional Quantities 
Not all quantities of interest in the context of irradiance forecasting (i.e., GTI, DNI or PV power) 
are always available as direct NWP output or as a result of CMV forecasts. Post-processing can 
be applied to derive these quantities. To that aim, statistical or machine learning methods are 
typically employed, but empirical or physical models are also frequently used to derive the 
desired quantity from the direct output of the forecasting model.  

Although GHI has become a standard output of most NWP models, this was not the case when 
the field of solar forecasting started to emerge. For example, Perez et al. (2007) proposed an 
empirical solar radiation forecast model relating sky-cover predictions from the National Digital 
Forecast Database to the clear-sky index to derive GHI forecasts. 

The irradiance components (DHI and DNI) are still not provided as direct output from many 
irradiance forecasting systems. To derive them from GHI forecasts, several empirical diffuse or 
direct fraction models can be used, many of which were originally developed for application to 
measurements or satellite data (see also Section 4.2 in Chapter 4). These models are also being 
used in DNI forecasting systems that are based on a GHI forecast (e.g., Schroedter-Homscheidt, 
Benedetti, and Killius 2016). For DNI forecasts, several physical post-processing approaches 
have also been proposed, specifically for better consideration of aerosols. Breitkreuz et al. (2009) 
proposed a forecasting approach for direct and diffuse irradiance based on the combination of a 
chemistry transport model and an NWP model in which forecasts of AOD are directly collected 
from the chemistry transport model outputs. Similarly, Gueymard and Jimenez (2018) used 
WRF-Solar with hourly inputs of aerosol forecasts from NASA’s Goddard Earth Observing 
System Model 5 (GEOS-5) atmospheric analysis model. Such aerosol forecasts, together with 
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other remote sensing data (ground albedo and ozone) and NWP parameters (water vapor and 
clouds), are used as input to radiation transfer calculations to derive the irradiance forecasts. A 
similar approach was used by Lara-Fanego et al. (2012) to derive DNI from WRF output using 
aerosol observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
onboard the Terra satellite. 

In the context of PV applications, deriving GTI (or plane-of-array [POA]) forecasts is also of 
interest (see Section 8.4.1.1). 

8.4 PV Power Forecasting and Regional Upscaling  
PV power forecasts for a given location or region are important for plant operators, grid 
operators, and the marketing of produced energy. They are derived from irradiance predictions 
with physics-based or statistical methods or a combination of both (see Figure 8-5). The 
exceptions are time-series approaches for very short-term forecast horizons that are solely based 
on PV power measurements.  

 
Figure 8-5. Overview of basic modeling steps in PV power prediction.  

Irradiance prediction: Different forecasting models for different forecast horizons (e.g., cloud-
motion sky imager and satellite data, NWP) and combination with statistical learning approaches 

for optimized site-specific predictions. 
PV power prediction: Conversion of irradiance to PV power with parametric PV simulation models 
and/or statistical learning approaches; regional PV power prediction requires upscaling as a last 

step. Image reproduced from Lorenz (2018) 
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Physics-based parametric modeling involves transposing GHI to GTI (POA) irradiance (Section 
8.4.1.1) and then applying a PV simulation model (Section 8.4.1.2). For this, information on the 
characteristics of the PV system configuration is required in addition to the meteorological input 
data; this includes information on nominal power, tilt, and orientation of a PV system as well as 
characterization of the module efficiency as a function of irradiance and temperature. 
Alternatively, the relationship between PV power output and irradiance forecasts and other input 
variables can be directly established with statistical or machine learning on the basis of historical 
data sets including measured PV power. In practice, the approaches are often combined, and 
statistical post-processing using measured PV power data is applied to improve predictions with 
parametric simulation models (Section 8.4.1.3). PV power prediction for grid operators requires 
forecasts of the aggregated PV power generation for a specified area (i.e., regional forecasts 
instead of single-site forecasts). These regional predictions are typically obtained by upscaling 
methods (see Section 8.4.2). 

8.4.1 Simulation of PV Power Plant Production 
The simplest way to forecast the production of a PV power plant is to apply a PV power 
simulation model to the forecast of the relevant predicting variables (primarily irradiance, but 
also environmental temperature and wind speed). Physics-based models explicitly require 
specific inputs. ANNs or other machine learning models might be more flexible and benefit from 
a more extensive set of input variables. 

8.4.1.1 Estimating Plane-of-Array or PV Power from Irradiance Forecast 
Because empirical PV simulation models use irradiance or the POA as key inputs, the 
transposition of GHI into GTI to obtain the POA irradiance (see also Chapter 4, Section 4.2) is 
the first modeling step. For example, the PV power forecasting approaches presented by Lorenz 
et al. (2011) and Pelland, Galanis, and Kallos (2013) involve empirical models to derive the POA 
irradiance as input for PV simulation models. Unless DNI and DHI are explicitly provided by the 
forecast model, this first step requires splitting GHI into its direct and diffuse irradiance 
components. For that purpose, many empirical diffuse or direct fraction models that were 
originally developed for application to measurements or satellite data can be used (see also 
Section 4.2). Gueymard and Ruiz-Arias (2015) and Aler et al. (2017) presented an unprecedented 
worldwide evaluation of 140 of these separation models proposed during the last 60 years. 

Next, the direct and diffuse components are projected or “transposed” to the POA (see Chapter 4, 
Section 4.3). The transposition of the direct irradiance is straightforward, subject only to 
geometric considerations. The transposition of the diffuse irradiance requires, again, an empirical 
model for the directional distribution of radiance over the sky, describing anisotropic effects such 
as horizon brightening and circumsolar irradiance (Perez et al. 1987; Gueymard 1987; Hay 
1979). Validation studies of these transposition models are provided by Behr (1997); David, 
Lauret, and Boland (2013); Gueymard (2009); Ineichen (2011); and Kambezidis et al. (1994). 
The validation of combined separation and transposition models has been undertaken by 
Gueymard (2009); Orehounig, Dervishi, and Mahdavi (2014); Lave et al. (2015); and Yang 
(2016). 
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8.4.1.2 PV Power Simulation 
In the next step, the POA irradiance is converted to PV output power. Most simple PV 
simulation models use only the global tilted irradiance on the POA as input and scale it with the 
PV module array area and efficiency: 

𝑃𝑃𝑃𝑃𝑃𝑃  [𝑘𝑘𝑘𝑘] = 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 �
𝑘𝑘𝑘𝑘
𝑚𝑚2� ∗ 𝐴𝐴𝑃𝑃𝑃𝑃[𝑚𝑚2] ∗ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚[%]

100
∗ 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (8-1) 

with: 

• 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 �
𝑘𝑘𝑘𝑘
𝑚𝑚2�, irradiance on the module’s POA 

• 𝐴𝐴𝑃𝑃𝑃𝑃[𝑚𝑚2], the PV array module area 
• 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚[%], the efficiency of the PV modules 
• 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, a factor accounting for additional deviations (e.g., deviations that are due 

to electrical, optical, or thermal losses). 
State-of-the-art PV simulation models consider additional influencing factors. Because of optical 
losses on the module surface, the effective irradiance is lower than the incoming POA irradiance 
(e.g., Martin and Ruiz 2001). The DC module efficiency depends on the POA irradiance and 
decreases with increasing temperature. It is secondarily also affected by wind speed and direction 
(e.g., Beyer et al. 2004). The spectral distribution of irradiance is another influencing factor. 
Moreover, the conversion efficiency of DC-to-AC inverters is not constant and should be also 
modeled (e.g., Schmidt and Sauer 1996). 

A deeper insight into the modeling of PV power and corresponding variables can be achieved 
with the tools provided by pvlib, a software package for modeling PV systems (Andrews et al. 
2014) (see also Section 9.4). The choice of input parameters is an issue for using such a model. 
A natural approach is to use the metadata available for the PV system (e.g., module and inverter 
specifications, orientation, and peak power); however, this information is frequently missing or 
erroneous, especially for smaller PV systems. An alternative is learning the parameters from 
historical data. Here, it is emphasized that measurement issues, plant outages, or shading can 
impact the estimation of these parameters. Failures of technical components are likely to have 
large impacts, but the same is true with grid codes, consumption, and curtailments, which are 
caused by grid operation or electricity market price. To overcome these issues, a robust training 
method has been proposed by Saint-Drenan et al. (2015). 

8.4.1.3 Statistical and Machine Learning Methods for PV Power Forecasting Based on 
PV Power or Irradiance Measurements 

When PV power measurements are available, the output of a forecast derived with PV power 
simulation is often adapted to PV power measurements with statistical or machine learning 
methods to improve the predictions (e.g., Kühnert 2015). When aiming to fit a time series 
of measured PV power plant feed-in, one needs to account for external effects reducing the 
production, as described in Section 8.4.2.  

Recently, the direct simulation of PV power with statistical or machine learning models (see 
Section 8.3.1) has also gained popularity. This forecasting technique is based on historical data, 
either by means of a statistical analysis of the different input variables (e.g., autoregressive 
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moving average or autoregressive integrated moving average) or by using machine learning 
algorithms that can also handle nonlinear and nonstationary data patterns (Das, Tey and 
Seydmahmoudia 2018; Ulbricht 2013). 

8.4.2 Estimation and Forecasting of Regional PV Power Feed-In 
A very large number of PV systems contribute to the overall PV power generation in a control 
area or a country. TSOs and utilities require forecasts and estimates of this overall PV power 
(e.g., as a basis for energy trading).  

For many small PV systems, which contribute a large share of the overall feed-in, PV power is 
not measured with sufficient resolution (e.g., 15-minute or hourly) in many countries; only 
annual energy totals are available. Consequently, the actual overall PV power feed-in must be 
estimated using other available data. These estimates of regionally aggregated PV power are 
important as a starting point for the shortest-term forecasting in real time and as a reference for 
the statistical training of regional forecasts as well as for evaluations. 

Regional PV power feed-in can be estimated using the following data: 

• Measurements of the output of PV plants  
• Meteorological data (irradiance and temperature) 
• Information on the fleet of PV system: coordinates and installed capacity (along with tilt 

and orientation if available). 
An approach frequently applied for both the estimation and the forecasting of regional PV power 
feed-in is upscaling from a representative set of PV systems in combination with information on 
the PV fleet. Another approach combines meteorological information (e.g., real-time irradiance 
from satellite data or irradiance forecasts) with PV simulation using information of the 
characteristics of the PV fleet. This information is available at different levels in various 
countries but remains difficult to obtain on a regular basis. Killinger et al. (2018) addressed this 
issue by collecting the data and applying the method at several thousands of PV system 
characteristics. As a first step, this approach does not rely on PV measurements, but in practice 
some-post processing is often applied.  

With respect to forecasting of regional PV power, there are additional options. In principle, 
it would be possible to predict the PV power output for each PV plant in a region (even if PV 
power measurements were unavailable), and subsequently aggregating the predictions for 
the whole area (i.e., a “bottom-up” or accumulation approach). This method, however, is 
characterized by a high computational burden and requires a detailed knowledge of every plant 
in the area; therefore, it is difficult to achieve, especially for large areas. Nonetheless, two 
examples of PV-system-based forecasts have been published (Vaz et al. 2016; Carillo et al. 
2020).  

Finally, if an estimated time series of regional PV power time series is given, forecast providers 
can also train their models directly to this PV power time series without requiring detailed 
information of the PV fleet (i.e., a “models input average” approach). 

These approaches are introduced in sections 8.4.2.1, 8.4.2.2, and 8.4.2.3. 
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8.4.2.1 Upscaling Based on Representative PV Systems  
One option for upscaling is to rescale the output of the reference plants to the overall installed 
capacity in a given region (Lorenz et al. 2011; Kühnert 2015). This approach exploits the strong 
correlation of the power output of nearby PV systems and allows for the estimation and the 
prediction of PV power with good accuracy given a sufficient number of reference plants and 
given that the representative set reflects the basic properties of the total data set (Kühnert 2015; 
Saint-Drenan et al. 2016). Representation of the spatial distribution of the nominal power and of 
the PV systems’ tilt and orientation is most important in this approach. In operational PV power 
prediction systems based on this approach, the upscaling is typically performed for small 
subregions (e.g., down to postal codes) and potentially also for different classes of PV system 
size in a first step. Then, the estimates for the different subregions and classes are aggregated to 
the region of interest. 

Another approach for upscaling based on representative PV systems uses spatial interpolation 
methods. Starting with a set of reference power plants, one can interpolate the (measured or 
predicted) power to any other power plant, assuming that at least the exact coordinates of 
reference as well as target locations are known. Geosciences offer several methods to conduct 
that task; see the review by Li and Heap (2014). The most popular of these methods are the 
simple but robust inverse distance weighting (IDW), and some authors apply the more complex 
kriging method, at least to interpolate irradiation data (Jamaly and Kleissl 2017; Yang et al. 
2013). Because irradiance is the most important variable for PV power production, methods are 
likely to apply to both measured and predicted power. 

One key difference of the two mentioned methods is the feature of convexity: the IDW method is 
convex and therefore generates interpolated values only in the range from the min to the max 
input values; on the other hand, kriging is a nonconvex method that can produce results outside 
the range of input measurements. Considering the aim to estimate many local PV power 
production values based on a set of measurements from different locations, it seems reasonable 
to rely on a set of references that is as large as possible when using the IDW method. 

Because this robust method is one of the most commonly implemented methods, as exemplified 
by Saint-Drenan (2011) and Bright et al. (2018), it is briefly described here. The PV power, Pj, 
for power plant, j, is the weighted sum of n surrounding power plants, i, where the weights, wij, 
are calculated based on the inverse of distance, d, between j and i, so that the sum of all weights 
equals one. The exponent, u, is typically optimized and found to be approximately 1.7–2.0. 

𝑃𝑃𝑗𝑗(𝑡𝑡) = � 𝑤𝑤𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
  (8-2) 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑖𝑖,𝑗𝑗)−𝑢𝑢

∑ 𝑑𝑑(𝑘𝑘,𝑗𝑗)−𝑢𝑢𝑛𝑛
𝑘𝑘=1

,𝑢𝑢 > 0  (8-3) 

The targets, j, can alternatively be seen as the center of all installed capacity of an area of interest; 
however, assuming similar characteristics (e.g., orientation angles) between references and targets 
is needed for this. Improvements have been observed by accounting for known orientations (e.g., 
Killinger et al. 2016). Last, an important step is the aggregation of all relevant targets (power plants 
or areas) for a region of interest. When it comes to unknown or dynamically changing electric grid 
connections, a new source of uncertainty becomes important. An extensive investigation of more 
general uncertainties can be found in Saint-Drenan et al. (2016). 
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8.4.2.2 Regional Model Based on Statistical Analysis of the Fleet of PV Systems 
As mentioned, simulating each single plant installed in a region is not realistic because of the 
very high computational costs. As shown by Saint-Drenan, Good, and Braun (2017), a realistic 
alternative is to group all plants with similar characteristics (i.e., orientation angles) and simulate 
this limited number of groups. It can easily be shown that this computational technique allows 
for speeding up the calculation without losing information, making this approach viable. This 
type of implementation requires determining the share of each group of plants—in other words, 
the share of installed capacity for each class of orientation must be assessed. Several approaches 
can be followed to obtain this information.  

The first approach, which is described by Saint-Drenan et al. (2017), involves conducting a 
statistical analysis on a subset of the installed PV plants (see Figure 8-6). The risk here is that the 
selected samples are not representative of the actual PV system. To address this issue, it is 
possible to train the distribution of the different classes of PV plants; this option was 
demonstrated by Saint-Drenan et al. (2019), where a Bayesian approach was used to regularize 
the training approach. This statistical approach has also been employed in the Copernicus 
Climate Change Service to generate regional PV power for each region in Europe using the 
ERA5 reanalysis data set. As described by Saint-Drenan et al. (2018), the parameters of the 
statistical regional model have been derived from the optimal tilt angle, allowing this model to be 
implemented anywhere in Europe without the need for a training data set. A comparison of the 
model output with the European Network of TSOs for Electricity data showed that this approach 
is well accepted. Note that estimates of the regional power production for each European Union 
country is calculated operationally each month with this method. The data can be found on the 
Copernicus Data Store.50 

 
Figure 8-6. Distribution of the tilt angle of German PV systems for different classes of peak power. 

Image from Saint-Drenan et al. (2017) 

 
50 See https://cds.climate.copernicus.eu/#!/home.  

https://cds.climate.copernicus.eu/#!/home
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8.4.2.3 Forecasting Regional PV Power Based on Averaged Model Inputs 
The direct approach, called “model inputs average,” is based on the spatial smoothing of the 
input features. In this case, the PV power generation of the area is considered to be a virtual 
power plant, and prediction is made directly at the regional level by using a historical data set of 
regional PV power (measured or estimated) and input meteorological forecasts aggregated at a 
smaller spatial scale than the region of interest. The main advantage of this approach is the 
possibility of obtaining a reliable power forecast without additional details about the installations 
beyond the total installed capacity of the whole area. The relationship between meteorological 
forecasts and PV power time series is typically established with machine learning approaches. 
An overview of the relationship is given by Betti et al. (2020). A prerequisite of this approach is 
the availability of a time series of actual PV power feed-in, which can be estimated by the 
upscaling models described in Section 8.4.2.1. In many countries, estimates of the regional PV 
power feed-in are published, for example, by grid operators, and they are available to forecast 
data providers as a basis for training. 

8.5 Evaluation of Irradiance and PV Power Forecasts 
The evaluation of solar irradiance forecasts provides users with the necessary information about 
forecast accuracy and helps them choose different forecasting products or assess the risk when 
using a particular forecast as a basis for decisions. An extensive overview of forecast verification 
methods was given by Jolliffe and Stephenson (2011). This section addresses the evaluation of 
deterministic irradiance forecasts that provides an overall indication of the uncertainty of a 
specific forecast model. Probabilistic solar forecasts assigning uncertainty estimates to each 
individual forecast value are described in Section 8.6. 

The quality of forecasts is evaluated by assessing their similarity to reference data. Most often, 
irradiance measurements are used as reference data, which are commonly referred to as ground 
truth data. Nevertheless, reference data are always affected by a certain degree of uncertainty 
(see Chapter 7). Alternatively, satellite-retrieved irradiance values or the output of a detailed 
physical model might serve as a reference. 

The choice of appropriate metrics and concepts for the evaluation of solar irradiance and power 
forecasts is the subject of ongoing discussions within the solar forecasting community; see, e.g., 
Hoff et al. (2012a) and Marquez and Coimbra (2013). Recently, Yang et al. (2020) proposed 
applying the well-established Murphy-Winkler framework for distribution-oriented forecast 
verification as a standard practice to analyze and compare solar forecasts. 

Here, the most standard evaluation methods are outlined, including (1) statistical error measures 
(Section 8.5.1.1); (2) comparison to reference models using the skill score parameter (Section 
8.5.1.2); and (3) other important considerations, such as the representation of the observed 
frequency distribution and the forecast “goodness” as a function of solar position, hour of the 
day, cloud variability, or even spatiotemporal averaging (Sections 8.5.2–8.5.4). These concepts 
are introduced using examples from an observational data set of hourly pyranometer 
measurements from 18 weather stations of the German Weather Service from March 2013 to 
February 2014 (Lorenz et al. 2016) and forecasts from two NWP models, including the: 
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• High-resolution deterministic global IFS model, operated at the ECMWF, with spatial 
resolution of 0.125°, 3-hourly outputs, and forecast horizon of 24 hours issued every day 
at 00:00 UTC 

• High-resolution regional HIRLAM SKA model, operated at the Danish Meteorological 
Institute, with spatial resolution of 3 km, hourly outputs, and forecast horizons from 4–9 
hours ahead, issued daily at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC. 

In addition, Section 8.5.5 addresses the evaluation of regional PV power forecasts in a case study 
in Italy. Finally, Section 8.5.6 introduces the concept of “firm power forecasts” as an effective 
model validation metric to account for the economic value of solar forecasts. 

8.5.1 Error Measures  
Statistical error measures and skill scores are applied for quantitative forecast evaluation. 

8.5.1.1 Statistical Error Measures 
Here, the most commonly used error measures based on first-order statistics are presented. The 
error of a single measurement is given as:  

 εi =Ipred,i−Imeas,i ,  (8-4) 

where Ipred,i denotes a predicted irradiance value (GHI or DNI), and Imeas,i is the corresponding 
measured value.  

To evaluate the forecast accuracy of the solar power predictions, the root mean square error 
(RMSE) is commonly used:  

 RMSE = 1
√𝑁𝑁
�∑ 𝜀𝜀𝑖𝑖2𝑁𝑁

𝑖𝑖=1   (8-5) 

where N is the number of data pairs. The mean square error, MSE = RMSE2, is also commonly 
used. Typically, only daytime values are considered for the evaluation. Relative errors for the 
irradiance forecast are generally derived by normalization with respect to mean measured 
irradiance of a given time interval. In contrast, relative errors of PV power forecasts for utility 
applications are often normalized to the installed power rather than the mean measured value 
(e.g., Lorenz et al. 2011). 

The RMSE can be split into two components: systematic (1) or bias error and (2) stochastic error 
or standard deviation. The bias is the difference between the mean of the predicted and measured 
values (systematic error): 

 ∑
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A positive bias means the predicted values exceed the measurements on average. 
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The standard deviation of the errors, stderr, is defined as: 

 ∑
=
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N
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stderr
1

2)(1)( εεεσ   (8-7) 

The stderr provides information on the spread of the errors around their mean value and might be 
further decomposed into one part related to the error amplitude [σ(Ipred) – σ(Imeas)] and another 
part related to the correlation coefficient, r, of the time series, which is defined as: 
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Overall, the complete decomposition of RMSE yields: 

 RMSE2 = bias2 + (σ(Ipred) – σ(Imeas))2 + 2σ(Imeas) σ(Ipred) (1 – r) (8-9a) 

or, equivalently, and more simply: 

 RMSE2 = bias2 + stderr2. (8-9b) 

Another common measure to assess forecast accuracy is the mean absolute error (MAE): 
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which is recommended by Hoff et al. (2012a) as a preferred measure, in particular for reporting 
relative errors. 

From a user’s point of view, the choice of the most suitable error measure will be based on the 
impact of forecast errors on their application. MAE is appropriate for applications with linear 
cost functions (i.e., when the costs caused by inaccurate forecast are proportional to the forecast 
error). The RMSE is more sensitive to large forecast errors and hence suitable when small errors 
are more tolerable and larger errors cause disproportionately high costs, which is the case for 
many applications in the energy market and for grid management issues.  

In addition to the computation of these error measures, at least some basic visual analysis is 
strongly recommended. A direct comparison of measurements and forecasts in scatter plots or 
2D histograms and time series is helpful to develop a better understanding of forecast 
performance. 

8.5.1.2 Skill Score and Persistence Forecast Model 
Skill score (also referred to as forecast skill) is used to quantify the forecast performance relative 
to a reference model. The RMSE is normally used for this comparison; other scores such as 
MAE or MSE are also often used. The skill score is defined as the difference between the score 
of the reference model and the forecast model divided by the difference between the score of the 
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reference model and a perfect model; note that a perfect model yields zero RMSE. For RMSE, 
the skill score, ssRMSE, is calculated as: 

   ssRMSE = RMSEref −RMSE
RMSEref

,  (8-11) 

where RMSEref refers to the reference model, and RMSE refers to the investigated forecasting 
algorithm (Coimbra and Pedro 2013a). The skill score’s value of 1 hence indicates a perfect 
forecast, and a skill score of 0 means that the investigated algorithm has the same RMSE as the 
reference forecast. A negative value indicates performance that is worse than the reference. Skill 
scores might be applied for comparisons to a simple reference model and also for 
intercomparisons of different forecasting approaches (i.e., improvement scores). 

In solar radiation forecasting, persistence is the simplest and most widely used forecast reference 
model. The persistence model is a trivial model that assumes that the current situation does not 
change during the forecasted lead time. Several definitions of persistence exist, including simple 
persistence; scaled persistence, which accounts for solar geometry changes; and more-advanced 
concepts, such as smart persistence. The most widely used definitions are presented next. 

For day-ahead forecasts, the simplest approach is to assume that irradiance, I (GHI or DNI), 
persists during a period of 24 hours, that is: 

 𝐼𝐼per,24h(𝑡𝑡) = 𝐼𝐼meas(𝑡𝑡 − 24h). (8-12) 

A more elaborate option for GHI, which produces higher accuracy forecasts, is to separate 
the clear and cloudy contributions to solar radiation and assume that only the cloudy component 
(i.e., the random component of GHI) persists during the forecast lead time. The clear component 
is strongly influenced by the deterministic solar geometry and can be described with reasonable 
accuracy using a clear-sky radiation model. In such a modeling approach, the persisting 
magnitude is the clear-sky index, Kc, calculated from the measured GHI. For forecast horizons of 
several hours (∆t) ahead, persistence GHIper,∆t for time t is then defined as: 

 GHIper Kc,∆t(𝑡𝑡) = GHIclear(𝑡𝑡) 𝐾𝐾𝑐𝑐(𝑡𝑡 − ∆𝑡𝑡). (8-13) 

For DNI, a similar approach can be used based on the beam clear-sky index or the Linke 
turbidity factor (Kuhn et al. 2017b).  

In the context of the IEA Task 46 (IEA 2015), the so-called “smart persistence” has been 
proposed. It consists of increasing the integration time that defines the current conditions 
commensurately to the forecast time horizon ∆t: 

                  𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∆𝑡𝑡(t) =  𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(t) 1
∆𝑡𝑡 ∫ 𝐾𝐾𝑐𝑐(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡−∆𝑡𝑡

𝑡𝑡−2∗∆𝑡𝑡    (8-14) 
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Or, for measurements available in discrete time interval ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 : 

               𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,∆𝑡𝑡(t) =  𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(t) 1
𝑁𝑁
∑ 𝐾𝐾𝑐𝑐(𝑡𝑡 − ∆𝑡𝑡 �1 + 𝑖𝑖

𝑁𝑁
�),𝑁𝑁

𝑖𝑖=1    (8-15) 

with 𝑁𝑁 =  ∆𝑡𝑡
∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

. 

Another less-used reference model is based on climatological mean values. Alternatively, 
combinations of climatology and persistence can be applied as a reference, as recommended by 
Yang et al. (2020). Further discussion on forecast benchmarking using the skill score and clear-
sky persistence is provided by Yang (2019b). 

 
Figure 8-7. Clear-sky index (here noted as kt*) forecast error as a function of (left) cosine of solar 
zenith angle and (right) hour of the day for the forecasts issued by the IFS and SKA NWP models 

(blue and red lines, respectively). Solid lines show RMSE, and dashed lines show mean bias error. 
The evaluated period is from March 1, 2013–February 28, 2014. 

8.5.2 Analysis of Forecast Error with Respect to Solar Elevation 
A special feature of solar irradiance is its very strong deterministic component, which results 
from the daily and seasonal course of the sun. This deterministic signal strongly influences the 
forecast error signal. Hence, to investigate the solar irradiance forecast errors, it is sometimes 
advisable to evaluate only the nondeterministic part of solar radiation, which is primarily caused 
by errors in the representation of clouds. To this aim, the analyzed variable is often the clear-sky 
index forecast error instead of GHI forecast errors.  

Figure 8-7 shows the RMSE and bias of the clear-sky index, Kc, as a function of the cosine of the 
solar zenith angle (Figure 8-7, left) and the time of day (Figure 8-7, right) for two different NWP 
model forecasts (IFS and SKA). The two models show similar behavior: RMSE increases with 
low SZA or, equivalently, during morning and evening hours, as is also the case with the 
magnitude of bias. This error pattern is very often caused by deficient modeling of the 
atmospheric transport of radiation for low solar altitudes. This limitation is a well-known flaw of 
the two-stream schemes used in most NWP models. Other model limitations also exist, such as 
3D effects and atmospheric refraction issues whose impact is enhanced for low solar altitudes. 
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Figure 8-8. RMSE of various versions of the SKA forecasts as a function of the standard deviation 

of measurement-based clear-sky index (here noted as kt*) (red) SKA.  
Dark blue: Nearest grid point, SKA20 x 20 averaged throughout 20 by 20 grid points. 

Light blue: SKAav 5-hour sliding mean of the clear-sky index of the forecasts of the average 
throughout 20 by 20 grid points. Green: SKAav, LR.kt*: linear regression of the clear-sky index of 

the forecasts applied to SKAav. The evaluated period is from April 3, 2013–February 28, 2014. 
Training set: Last 30 days, all 18 DWD sites 

8.5.3 Analysis of Forecast Error with Respect to Cloud Variability and 
Spatiotemporal Averaging 

Forecasts generally show good agreement with measurements for clear-sky periods or even 
completely overcast days, which basically have a quasi-constant clear-sky index; however, cloud 
variability strongly impacts solar forecasting accuracy. Hence, considerable deviations from the 
measurements are typically observed for days with variable cloudiness. An evaluation of the 
SKA forecast errors as a function of the measurement-derived Kc variability, here represented by 
the standard deviation of Kc throughout 5 hours, is shown in Figure 8-8. The evaluation also 
shows this dependence for multiple spatial and temporal averaging configurations of the SKA 
forecasts. Overall, Figure 8-8 shows: 

1. The forecast error increases with enhanced cloud variability. 
2. Spatial and temporal forecast averages result in reduced RMSE values, going from 

negligible reductions for very stable conditions to large reductions for highly 
variable conditions. 

Regarding the first point, the solar radiation forecast error shows a clear dependency with respect 
to cloud variability and, more generally, with respect to the cloud conditions. Combining the 
error trend in the dependence of cloud conditions and the solar elevation has been proposed as an 
efficient method to reduce the systematic error in NWP model forecasts using a post-processing 
MOS. In particular, Lorenz et al. (2009) used a polynomial function with cos(SZA) and Kc as 
independent variables to parameterize the forecast bias error from historical forecasts relative to 
observations and ultimately to subtract the parameterized error from operational forecasts. This 
approach has also been adapted and evaluated for other NWP models and different climates. 
Mathiesen and Kleissl (2011) found improved accuracies when applying that approach to three 
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different NWP models—GFS, North American Model, and IFS—for stations in the continental 
United States. Pelland, Galanis, and Kallos (2013) did the same for the Canadian GEM model, 
and Müller and Remund (2010) for the WRF model forecasts in Switzerland. 

Regarding the second point, the rationale of the RMSE decreases when an averaging scheme is 
applied, and this is explained by the existence of small correlations among the pixels over which 
the averaging scheme is applied. This leads to random error cancellations during the averaging 
process. In contrast, for stable conditions, when the correlation among neighboring pixels is very 
high, the cancellation of random errors is small. 

The optimal region size and time interval for RMSE reduction using averaging depends on the 
correlation structure among neighboring forecasts, both in time and space. Multiple studies have 
been conducted on this topic. For instance, a detailed evaluation of irradiance forecasts from the 
Canadian GEM model resulted in a reduction of forecast errors in the range from 10% to 15% 
when the model outputs were averaged throughout several hundred kilometers (Pelland, Galanis, 
and Kallos 2013). A similar improvement was achieved with WRF forecasts provided by 
Meteotest using averages over an area of 50 km by 50 km (Müller and Remund 2010). In 
parallel, Mathiesen and Kleissl (2011) reported an averaging area of 100 km by 100 km as 
suitable for irradiance forecasts using the GFS and North American Mesoscale forecast system 
models. The benefit of horizon-dependent smoothing filters for CMV forecasts was also shown 
by Lorenz, Hammer, and Heinemann (2004) and by Kühnert, Lorenz, and Heineman (2013). 

The reduction of RMSE by spatial and temporal averaging can be extrapolated to the particular 
case in which the forecasting model performance is evaluated throughout multiple sites across a 
wide region (also referred to as regional forecast) or for coarser temporal granularities, such as 
monthly or yearly. In these cases, there is a reduction of random errors with respect to point-wise 
evaluations that make regional forecasting more accurate than point-wise forecasting. Again, the 
extent of the reduction depends on the particular correlation levels among the aggregated values 
in each case. An analysis of regional forecast errors for different region sizes and different 
forecast models was given by Lorenz et al. (2009); Kühnert, Lorenz, and Heineman (2013); and 
Lorenz and Heinemann (2012). 

Temporal and spatial averaging can be also considered for ASI-based forecasts. It has been 
found that in a nowcasting system with four sky imagers during days with many transient clouds, 
the DNI RMSE for forecasts that are 10 minutes ahead is reduced from 13.0% to 6.5% using 
averages of 4 km2 and 15 minutes with respect to pixel-wise forecasts (Kuhn et al. 2017c). 

Despite the positive impact of spatiotemporal averaging on reducing the RMSE of a forecast, 
there is a negative effect that adversely impacts the frequency distribution of forecasted data 
because averaging reduces extreme forecasted values and distorts the original frequency 
distribution of the forecast data. Consequently, forecast averages should be used only when the 
forecast frequency distribution is not critical. 

8.5.4 Analysis of the Frequency Distributions of Forecasted Values 
The ability of a model to reproduce the observed frequency distribution of both solar irradiance 
and clear-sky index is a required property for some applications. In addition, it can provide 
insights about potential problems in the forecast model. 



Chapter 8-35 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Figure 8-9 shows the probability density function (PDF) of the clear-sky index, Kc, for forecasts 
issued by the SKA and IFS NWP models, as in Figure 8-7, and the actual PDF obtained from 
observations. These plots show that the SKA model systematically overpredicts clear-sky 
situations and underpredicts overcast conditions. Consequently, intermediate situations are 
underrepresented. On the other hand, the IFS model underrepresents very clear and very cloudy 
conditions and overrepresents intermediate situations. Although this gives insightful information 
about the forecast performance, the similarity of the distribution functions of measurements and 
forecasts does not guarantee an accurate forecast because it does not include information 
regarding the correct timing of the modeled events.  

 
Figure 8-9. PDF of the clear-sky index (here noted as kt*) derived from measurements (gray), SKA 

model forecasts (red), and IFS model forecasts (blue). The evaluated period is from March 1, 
2013–February 28, 2014; cos(SZA) > 0.1. 

A quantitative evaluation of the agreement between the observed and forecasted distribution 
functions can be done using the Kolmogorov-Smirnov integral (Espinar et al. 2008; Gueymard 
2014), which is usually applied to distribution functions of GHI or DNI rather than to Kc (Beyer 
et al. 2009; Perez and Hoff 2013). 

8.5.5 Analysis of Regional Forecasts 
Regionally aggregated forecasts of PV power, typically derived through upscaling (see Section 
8.4.2), are required by grid operators. Regional forecasts show much lower uncertainties than 
single-site forecasts. By enlarging the footprint of the forecast region of interest, forecast errors 
are reduced (Hoff and Perez 2012; Lorenz et al. 2009, 2011; Fonseca et al. 2014; David et al. 
2016; Saint-Drenan et al. 2016). This phenomenon, which is called the smoothing effect, is 
related to the correlation between the forecast errors at different locations. The larger the region, 
the more locations with different irradiance variability are included, and thus solar forecast errors 
of the different sites are less correlated. This subsequently leads to a higher accuracy of the 
regional PV power forecasts.  

An example is shown in Figure 8-10, which depicts the day-ahead forecast accuracy that can be 
reached in Italy by predicting the PV generation of different control areas: The adopted model 
corresponds to an upscaling method using averaged model inputs and forecasting the power 
generation at market zone level directly (Betti et al. 2020). 
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In addition, a measure of PV power variability is displayed in Figure 8-10. With 𝑃𝑃(𝑡𝑡) denoting 
the PV power output at time t, the change in PV power for a given time step, ∆𝑡𝑡, is defined as: 

                                 ∆𝑃𝑃∆𝑡𝑡 = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃(𝑡𝑡 − ∆𝑡𝑡).  (8-16) 

Hourly values and a time step ∆𝑡𝑡 of 24 hours are specifically considered in Figure 8-10.  

 
Figure 8-10. Smoothing effect over Italy: RMSE of regional forecasts (circles) and persistence 

(triangles) as a function of the area size for the market zones in Italy (full circles/triangles) and for 
areas merging several adjacent market zones (empty circles/triangles). 

PV power variability in each zone is defined as the standard deviation, 𝜎𝜎(∆𝑃𝑃∆𝑡𝑡), as proposed by 
Perez et al. (2016), which is equivalent to the RMSE of the persistence of PV power (see also 
equations 8.5 and 8.12) 

                             𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 =  1
√𝑁𝑁
�∑ (∆𝑃𝑃∆𝑡𝑡)2𝑁𝑁

𝑖𝑖=1 =  𝜎𝜎(∆𝑃𝑃∆𝑡𝑡).   (8-17) 

Here, it is commonly assumed that the average of ∆𝑃𝑃∆𝑡𝑡 should be zero. 

Both the variability and the forecast errors decrease with an increase in the size of the region and 
the number of PV systems considered. They can be well fitted either by a hyperbolic function, 
similar to one proposed by Perez et al. (2016), or by an exponential function, similar to the one 
proposed by Lorenz et al. (2009). As shown in Figure 8-10, by enlarging the footprint of the 
forecast region from the prediction of the PV generation in each market zone in Italy to the 
prediction of the PV generation over all of Italy, the RMSE can decrease from 5.5% (market 
zones average) to 3.6% (countrywide). 

To summarize, expanding the transmission grid to manage the power generation in large areas 
(e.g., entire countries instead of market zones) not only reduces congestion and constraints on 
production capacity but also increases the forecast accuracy, as shown with the Italy example.  
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8.5.6 Effective Model Validation Benchmarking: Operationally Firm 
Solar Forecasts 

When validating solar forecasts, the classical error metrics (e.g., RMSE and MAE) introduced in 
Section 8.5.1 are commonly used. With continuous development in technology and changes in 
the energy market, the need arises for new validation measures that account for the economic 
value of solar forecasts. Thus, the firm power forecast (FPF or “perfect forecast”) concept was 
developed and introduced in a recent series of publications by Perez et al. (2019a, 2019b) and 
Pierro et al. (2020a). This forecast is both an effective model validation metric and an 
operational strategy to integrate increasing amounts of variable solar generation on electric grids 
(see also Section 9.7.3). The costs incurred in transforming imperfect forecasts into firm 
predictions define the new metric: These include the costs of energy storage and output 
curtailment needed to make up for any over- or underprediction situations. It was shown by 
Perez et al. (2019a, 2019b) and Pierro et al. (2020a) that delivering firm predictions (i.e., fully 
eliminating grid operator renewable supply-side uncertainty and, incidentally, the need to 
characterize forecasts probabilistically) could be achieved at a modest operational cost.  

Although other recent publications have focused on standardizing error metrics and forecast 
model validation practice (e.g., Hoff et al. 2012a; Yang et al. 2020), the choice of possible 
references as well as the possible definitions of persistence constitute sources of ambiguity when 
evaluating results from different studies, particularly reports emanating from the industry. In 
addition, the standard metrics, however “standardized,” are not directly exploitable by grid 
operators for estimating operational costs incurred by forecast errors. 

The FPF metric is defined as the optimum (i.e., minimum possible) capital cost of PV plant 
oversizing and storage that is sufficient to make up for all instances of over- and underforecasts. 
This minimum is a function of the assumed capital costs for PV and storage and, of course, of the 
quality of the forecast. This metric bypasses both the ambiguity of standard metrics and their 
exploitability by grid operators because the metric is (1) a tangible hardware cost and (2) an 
indirect measure of operational costs resulting from solar supply-side uncertainty, because 
applying firm forecasts would entirely eliminate the said uncertainty. 

Figure 8-11 compares the MAE and FPF metrics for GHI forecasts at 1-, 3-, and 24-hour forecast 
horizons. Results stem from the analysis of time series at the seven NOAA Surface Radiation 
Budget Network (SURFRAD) sites for a period of 1 year. The forecast models include smart 
persistence (Section 8.5.1.2), SUNY (also known as SolarAnywhere; SolarAnywhere 2019), and 
its underlying NWP components: IFS, GFS, National Digital Forecast Database, and the HRRR. 
In this example, the hardware costs quantifying the FPF metric amount to $1,200 per kW for PV 
oversizing and $200 per kWh for storage. 

A noticeable difference between the two metrics is the performance of smart persistence relative 
to the other models, especially for short-term horizons. Persistence turns out to be operationally 
more robust than generally assumed because, whereas its dispersion can be large (i.e., large 
MAE and RMSE), this dispersion tends to be well balanced around the 1:1 diagonal, with fewer 
instances of the prolonged over/underestimations that are operationally costly.  
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Figure 8-11. Comparison of forecast model performance at 1-, 3-, and 24-hour horizons for all 

SURFRAD stations using (left) the MAE metric and (right) the FPF metric. 

8.6 Probabilistic Solar Forecasts 
A forecast is inherently uncertain and a proper assessment of its associated uncertainty offers the 
grid operator a more informed decision-making framework. For example, a deterministic 
forecast that includes predictions intervals is of genuine added value and, if appropriately 
incorporated in grid operations, might permit an increase in the value of solar power generation 
(Morales et al. 2014).  

This section is restricted to the univariate51 context that corresponds to probabilistic forecasts 
that do not consider the spatiotemporal dependencies generated by stochastic processes such as 
solar power generation. Two types of solar52 probabilistic forecasts are considered here: quantile 
forecasts and ensemble forecasts (i.e., those using the Ensemble Prediction System, or EPS). 
Quantile forecasts are quite versatile probabilistic models and as such might address different 
forecasting time horizons, whereas EPS forecasts generally provide day-ahead probabilistic 
forecasts. Further, a verification framework is considered for evaluating the quality of solar 
probabilistic forecasts. The evaluation framework is based on visual diagnostic tools and a set of 
scores mostly originating from the weather forecast verification community (Wilks 2014). What 
follows provides an overview of the basic concepts related to solar probabilistic forecasting 
methods with an emphasis on the specific associated verification metrics. Comprehensive 
overviews regarding forecasting methods and the verification of solar probabilistic forecasts 
metrics can be found in van der Meer, Widén, and Munkhammar (2018); Antonanzas et al. 
(2016); and Lauret, David, and Pinson (2019).  

8.6.1 Nature of Probabilistic Forecasts of Continuous Variables 
In contrast to deterministic forecasts, probabilistic forecasts provide additional information about the 
inherent uncertainty embodied in NWP. The probabilistic forecast of a continuous variable, such as 
solar power generation or solar irradiance, takes the form of either a cumulative distribution function 
(CDF), 𝐹𝐹(𝑌𝑌), or a PDF, 𝑓𝑓(𝑌𝑌), of the random variable of interest, 𝑌𝑌 (e.g., GHI).  

 
51 Future work (see Chapter 10) will be devoted to multivariate probabilistic models capable of capturing the 
spatiotemporal correlations present in irradiance and PV forecasts.  
52 The term solar forecast encompasses solar irradiance forecasts and PV power forecasts. 
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The CDF of a random variable Y is given as: 

                                                 𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦)    (8-18) 

where 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) represents the probability that this random variable is less or equal to 𝑦𝑦. 

The predictive distribution can be summarized by a set of quantiles. The quantile, 𝑞𝑞𝜏𝜏, at 
probability level 𝜏𝜏 ∈  [0,1] is defined as follows: 

                   𝑞𝑞𝜏𝜏 = 𝐹𝐹−1(𝜏𝜏), (8.19) 

where 𝐹𝐹−1 is the so-called quantile function. A quantile, 𝑞𝑞𝜏𝜏, corresponds to the threshold value 
below which an event, y, materializes with a probability level, τ. 

Prediction intervals (also called interval forecasts) can be inferred from the set of quantiles. 
Prediction intervals define the range of values within which the observation is expected to be 
with a certain probability (i.e., its nominal coverage rate) (Pinson et al. 2007). For example, a 
central prediction interval with a coverage rate of 95% is estimated by using the quantile 
𝑞𝑞𝜏𝜏=0.025 as the lower bound and 𝑞𝑞𝜏𝜏=0.975 as the upper bound. Figure 8-12 shows an example of 
the probabilistic forecasts of solar irradiance where prediction intervals have been computed for 
nominal coverage rates ranging from 20% to 80%.  

 
Figure 8-12. Example of probabilistic solar irradiance forecasts: two days of measured GHI at Le 

Tampon, France, and associated 1-hour ahead forecasts with prediction intervals (yellow) 
generated with the quantile regression forest model. 

8.6.2 Quantile Forecasts 
Two approaches are commonly used in the community to generate quantile forecasts (see Figure 
8-13) addressing different forecast horizons. As input, they use past ground observations and 
satellite images for intraday forecasting or NWP deterministic forecasts that are more effective 
for day-ahead forecasting. The first approach (Bacher, Madsen, and Nielsen 2009; Pedro et al. 
2018) involves directly generating the quantiles of the predictive distribution of the variable of 
interest (e.g., GHI, DNI, or PV power). The second approach (Lorenz et al. 2009; David et al. 
2016; Grantham, Gel, and Boland 2016; Pierro et al. 2020b) produces the interval forecasts from 
the combination of a deterministic (point) forecast and quantiles of the prediction error.  
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For both approaches, quantiles can be estimated either by assuming a parametric law for the 
predictive distribution or by nonparametric methods, which make no assumptions about the 
shape of the predictive distribution.  

 
Figure 8-13. The two typical workflows used to generate quantile forecasts from recent past 

observations and/or deterministic NWP forecasts 

8.6.2.1 Parametric Methods 
Parametric models assume that the variable of interest or the prediction error follows a known 
law of distribution (e.g., a doubly truncated Gaussian for GHI or a Gaussian for the error 
distribution). Only a few parameters (e.g., mean and variance) are needed to fully characterize 
the predictive distribution. Consequently, this approach is particularly interesting in an 
operational context because it requires a low computational effort.  

 
Figure 8-14. PDF of the normalized error (zero mean and unit variance) of the hourly profile of day-

ahead forecasts of the clear-sky index provided by ECMWF-HRES for three different sky 
conditions and for the site of Saint-Pierre (21.34°S, 55.49°E), Reunion, France, in 2012. The red 

dashed line represents the fitted standard normal PDF. Image from David and Lauret (2018) 
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In the solar forecasting community, it is very common to fit a Gaussian distribution to the errors 
even though errors derived from deterministic forecasts of solar irradiance and of clear-sky index 
do not follow a Gaussian distribution (see Figure 8-14). For instance, Lorenz et al. (2009) 
developed the first operational PV forecasting model in Germany by assuming a Gaussian 
distribution of the error of the deterministic GHI forecasts generated by the IFS. More precisely, 
the predictive CDF was a Gaussian distribution with a mean corresponding to the point forecast 
and a standard deviation derived from a fourth-degree polynomial function for different classes 
of cloud index and solar elevation. For intrahour and intraday solar irradiance probabilistic 
forecasts, David et al. (2016) assumed a Gaussian error distribution of the deterministic forecast 
to generate a predictive CDF with a Generalized AutoRegressive Conditional Heteroskedasticity 
(GARCH) model. Instead of fitting a parametric PDF to the error distribution, Fatemi et al. 
(2018) proposed a framework for parametric probabilistic forecast of solar irradiance using the 
beta distribution and standard two-sided power distribution. 

8.6.2.2 Nonparametric Methods 
To avoid making assumptions about the shape of the predictive distribution, numerous 
nonparametric methods have been proposed in the literature (van der Meer, Widén, and 
Munkhammar 2018). Examples are techniques such as bootstrapping (Efron 1979; Grantham, 
Gel, and Boland 2016), kernel density estimation (Parzen 1962), or k-nearest neighbor (Pedro et 
al. 2018). Here, two prominent and simple nonparametric methods are discussed briefly: the 
quantile regression and analog ensemble techniques.  

Quantile regression models relate quantiles of the variable of interest (predictand) to a set 
of explanatory variables (predictors). Statistical or machine learning techniques—such as linear 
quantile regression, quantile regression forest, or gradient boosting (David and Lauret 2018; van 
der Meer, Widén, and Munkhammar 2018)—are commonly used to produce the set of quantiles 
with probability levels spanning the unit interval. 

The following summarizes the linear quantile regression method first proposed by Koenker and 
Bassett (1978). See David, Luis, and Lauret (2018) for details about the implementation of other 
regression methods, including other variants of the linear quantile regression, quantile regression 
forest, quantile regression neural network, or boosting.  

The linear quantile regression technique estimates a set of quantiles of the cumulative 
distribution function, 𝐹𝐹, of some response variable, 𝑌𝑌 (the predictand), by assuming a linear 
relationship between the quantiles of 𝑌𝑌 (𝑞𝑞𝜏𝜏) and a set of explanatory variables, 𝑋𝑋 (the predictors): 

𝑞𝑞𝜏𝜏 = 𝛽𝛽𝜏𝜏𝑋𝑋 + 𝜖𝜖, (8-20) 

where 𝛽𝛽𝜏𝜏 is a vector of the parameters to be optimized at each probability level, 𝜏𝜏, and 𝜖𝜖 
represents a random error term (Koenker and Bassett 1978).  

Numerous implementations of the linear quantile regression technique (and of its related 
variants) have been proposed in the literature to generate quantile forecasts for different forecast 
horizons and using different types of predictors, 𝑋𝑋. See, e.g., Bacher, Madsen, and Nielsen 
(2009); Zamo et al. (2014); Lauret, David, and Pedro (2017); van der Meer, Widén, and 
Munkhammar 2018; and Bakker et al. (2019).  
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The analog ensemble (AnEn) method (Delle Monache et al. 2013) is a simple nonparametric 
technique used to build the predictive distributions. The aim is to search for similar forecasted 
conditions in the historical data and to create a probability distribution with the corresponding 
observations. Alessandrini et al. (2015) applied an AnEn approach to a set of predicted 
meteorological variables (e.g., GHI, cloud cover, and air temperature) generated by the Regional 
Atmospheric Modeling System (RAMS). Note that the AnEn technique is mostly employed for 
day-ahead forecasts and generates the predictive distribution using NWP deterministic forecasts.  

8.6.3 Ensemble Prediction System 

8.6.3.1 Definition  
The EPS corresponds to a perturbed set of forecasts generated by slightly changing the initial 
conditions of the control run and of the modeling of unresolved phenomena (Leutbecher and 
Palmer 2008). Figure 8-15 shows a schematic representation of an ensemble forecast generated 
by an NWP model. The trajectories of the perturbed forecasts (blue lines) can differ strongly 
from the control run (red line). The spread of the resulting members (blue stain) represents the 
forecast uncertainty. For example, the ECMWF provides an ensemble forecast from the IFS 
model. It consists of 1 control run and 50 “perturbed” members. 

Though members of the ensemble are not directly linked to the notion of quantiles, they can be 
seen as discrete estimates of a CDF when they are sorted in ascending order. Lauret, David, and 
Pinson (2019) proposed different ways to associate these sorted members to a CDF. 

 
Figure 8-15. A schematic illustration of an ensemble forecast generated with an NWP model. 

Image from Met Office, © British Crown copyright (2021)  

8.6.3.2 Post-Processing of the Ensemble Prediction System 
Global and regional NWPs are designed to forecast a large variety of meteorological variables 
(but mainly precipitation and temperature) and have not previously focused on the accurate 
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generation of the different components of solar radiation. Consequently, raw ensembles provided 
by meteorological centers suffer from a lack of accuracy, a lack of calibration, or both 
(Leutbecher and Palmer 2008). Additionally, see, e.g., Yang et al. (2020) for definitions and 
discussions about the specific meaning of accuracy, calibration, and other specialized terms in 
the field of forecasting—some of which appearing in the following. Overall, raw ensemble 
forecasts are systematically refined by post-processing techniques (also called calibration 
techniques) to further improve their quality.  

The aim of post-processing is to apply a statistical calibration to the PDF drawn by the raw initial 
ensemble forecasts to optimize a specific metric (e.g., the continuous ranked probability score 
[CRPS] described in Section 8.6.4) used to assess the quality of probabilistic forecasts. Indeed, 
as well as having a coarse spatial resolution, the ensemble forecasts from NWPs are known to be 
underdispersive; in other words, they exhibit a lack of spread (Leutbecher and Palmer 2008). To 
address this, Sperati, Alessandrini, and Delle Monache (2016) proposed two different methods 
already used in the realm of wind forecasting: The variance deficit method designed by Buizza et 
al. (2003) and the ensemble model output statistic (MOS) method proposed by Gneiting et al. 
(2005). Even if these methods cannot be considered to be parametric, they are based on the 
characteristics of a normal distribution. Indeed, such a distribution is appealing because it can be 
assessed with only two parameters: the mean and the standard deviation, which are related to the 
average bias and the spread of the ensemble, respectively. 

Another method of calibration is based on the rank histogram (see Section 8.6.4); it was initially 
proposed by Hamill and Colucci (1997) for precipitation forecasts. Zamo et al. (2014) applied 
this method to the Météo France’s EPS, called PEARP, to generate probabilistic solar forecasts. 
The aim of this method is to build a calibrated CDF from the rank histogram derived from past 
forecasts and observations. Other techniques of EPS calibration exist, but they have not been 
used for solar forecasting. For example, Pinson (2012) and Pinson and Madsen (2009) suggested 
a framework for the calibration of wind ensemble forecasts. Junk, Delle Monache, and 
Alessandrini (2015) proposed an original calibration model for wind-speed forecasting applied to 
ECMWF-EPS based on the combination of nonhomogeneous Gaussian regression and AnEn 
models. Likewise, Hamill and Whitaker (2006) suggested an adaptation of the AnEn technique 
for the calibration of ensemble precipitation forecasts using the statistical moments of the 
distribution, such as the mean and spread of the members as predictors. See Wilks (2018) for a 
thorough review of univariate ensemble postprocessing methods. 

8.6.4 Verification of Solar Probabilistic Forecasts 

8.6.4.1 Properties Required for a Skillful Probabilistic System 
Several attributes characterize the quality53 of probabilistic forecasts (Jolliffe and Stephenson 
2011; Wilks 2014), but two main properties (reliability and resolution) are used to assess the 
quality of the forecasts. 

The reliability or calibration refers to the statistical consistency between forecasts and 
observations; in other words, a forecast system has a high reliability if the forecast probability 
and observed frequency agree. The reliability property is an important prerequisite because 

 
53 Quality refers to the correspondence between forecasts and the observations. 
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nonreliable forecasts would lead to a systematic bias in subsequent decision-making processes 
(Pinson et al. 2007). 

The resolution measures the ability of a forecasting model to generate predictive distributions 
that depend on forecast conditions. Put differently, the more distinct the observed frequency 
distributions for various forecast situations are from the full climatological distribution, the more 
resolution the forecast system has. Climatological forecasts are perfectly reliable but have no 
resolution. Consequently, a skillful probabilistic forecasting system should issue reliable 
forecasts and should exhibit high resolution. 

Sharpness, which refers to the concentration of predictive distributions, can be measured by the 
average width of the prediction intervals. Unlike reliability and resolution, sharpness is a 
function of only the forecasts and does not depend on the observations. Consequently, 
a forecasting system can produce sharp forecasts yet be useless if the probabilistic forecasts are 
unreliable.  

8.6.4.2  Probabilistic Verification Tools 
The evaluation framework is based on visual diagnostic tools and numerical scores.  

8.6.4.2.1 Visual Diagnostic Tools 
Table 8-1 lists the diagnostic tools for which Lauret, David, and Pinson (2019) provided pros and 
cons as well as detailed information about their implementation. Note that some tools were 
initially designed for a specific type of forecast (i.e., an ensemble or quantile forecast) and that 
there is apparently no visual diagnostic tool to assess the resolution property. 

Table 8-1. Visual Diagnostic Tools 

Diagnostic Tool Remarks 

Reliability diagram Initially designed for the reliability assessment of quantile forecasts 

Can be used for ensemble forecasts if members are assigned specific probability 
levels (see Lauret, David, and Pinson [2019]) 

Rank histogram  Initially designed for the reliability assessment of ensemble forecasts 

Can be extended to quantile forecasts if quantiles are evenly spaced 

Probability integral 
transform histogram 

Represents a reliability assessment of quantile forecasts  

Sharpness diagram Plots the average width of the prediction intervals for different nominal coverage 
rates 

Sharpness can only contribute to a qualitative evaluation of the 
probabilistic forecasts.  

Even if narrow prediction intervals are preferred, sharpness cannot be seen as a 
property to verify the quality of probabilistic forecasts but is more like the 
consequence of a high resolution. 
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Table 8-2. Forecast Metrics 

Forecast Metric Remarks  

Continuous ranked probability 
score (CRPS) 

Can be normalized to define a skill score (CRPS skill score) 

Can be further partitioned into the two main attributes: reliability and 
resolution 

Ignorance score Local score (i.e., the score depends only on the value of the predictive 
distribution at the observation) 

Cannot be normalized 

Interval score  Specifically designed for interval forecasts 

Quantile score  Forecast performance of specific quantiles 

8.6.4.2.2 Numerical Scores 
Numerical scores provide summary measures for the evaluation of the quality of probabilistic 
forecasts. Table 8-2 enumerates the main scoring rules for evaluating the quality of probabilistic 
forecasts of a continuous variable. All the scores listed in the table are proper scoring rules 
(Gneiting and Raftery 2007), hence ensuring that perfect forecasts are given the best score value. 
Lauret, David, and Pinson (2019) gave a detailed definition of each score.  

8.6.4.3 Presentation of Some Tools and Scores 
This section describes in detail some diagnostic tools and numerical scores. See Lauret, David, 
and Pinson (2019) and Yang et al. (2020) for descriptions of other metrics. 

8.6.4.3.1 Reliability Diagram 
A reliability diagram is a graphical verification display used to assess the reliability attribute of 
quantile forecasts. Quantile forecasts are evaluated one by one, and their observed frequencies 
are reported versus their forecast probabilities (see Figure 8-16). Such a representation is 
appealing because the deviations from perfect reliability (the diagonal) can be visually assessed 
(Pinson, McSharry, and Madsen 2010); however, because of both the finite number of pairs of 
observation/forecast and also possible serial correlation in the sequence of forecast-verification 
pairs, observed proportions are not expected to lie exactly along the diagonal, even if the density 
forecasts are perfectly reliable. Pinson, McSharry, and Madsen (2010) proposed a method to add 
consistency bars to the reliability diagram. This adding of consistency bars to the reliability 
diagrams can help users gain more confidence in their (possibly subjective) judgment regarding 
the reliability of the different models. Figure 8-16 shows an example of reliability diagram with 
consistency bars. In this example, the forecasts cannot be considered reliable because the line 
corresponding to the forecasts falls outside the consistency bars. More elaborate reliability 
diagrams are proposed by Yang (2019a, 2019c).  
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Figure 8-16. Example of a reliability diagram. Consistency bars for a 90% confidence level around 

the ideal line are individually computed for each nominal forecast probability. 

8.6.4.3.2 Rank Histogram 
A rank histogram is a graphical display initially designed for assessing the reliability of ensemble 
forecasts (Wilks 2014). Rank histograms permit users to visually assess the statistical consistency 
of the ensemble—that is, if the observation can be seen statistically like another member of the 
ensemble (Wilks 2014). A flat rank histogram is a necessary condition for ensemble consistency 
and shows an appropriate degree of dispersion of the ensemble. An underdispersed or 
overdispersed ensemble leads to U-shaped or hump-shaped rank histogram; see Figure 8-17. 

In addition, some unconditional biases can be revealed by asymmetric (triangle-shaped) rank 
histograms. It must be stressed that one should be cautious when analyzing rank histograms. As 
shown by Hamill (2001), a perfectly flat rank histogram does not mean that the corresponding 
forecast is reliable. Further, when the number of observations is limited, consistency bars can 
also be calculated with the procedure proposed by Bröcker and Smith (2007). 

 
Figure 8-17. Illustrative examples of rank histograms for an ensemble of M = 9 members. The 

horizontal solid blue line denotes the statistical consistency of the ensemble. The dashed-dotted 
lines represent the consistency bars. Figure inspired from Wilks (2014) 
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8.6.4.3.3 Overall Skill Assessment with the Continuous Ranked Probability Score 
The most common skill score for evaluating the quality of predictive densities of continuous 
variable is the CRPS, whose formulation is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
1
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��  �𝐹𝐹�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 (𝑦𝑦) − 𝐹𝐹𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 (𝑦𝑦)�

2+∞

−∞

𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑑𝑑, (8-21) 

where 𝐹𝐹�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 (𝑦𝑦) is the predictive CDF of the variable of interest, x (e.g., GHI), and 𝐹𝐹𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 (𝑦𝑦) is a 
CDF of the observation (i.e., a step function that jumps from 0 to 1 at the point where the 
forecast variable, 𝑦𝑦, equals the observation, 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜). The squared difference between the two CDFs 
is averaged over the N forecast/observation pairs. Note that the CRPS is negatively oriented 
(smaller values are better) and has the same dimension as the forecasted variable.  

Figure 8-18(a) shows three hypothetical predictive PDFs, and Figure 8-18(b) plots the 
corresponding predictive CDFs. The black thick line in Figure 8-18(b) represents the CDF of the 
observation, 𝐹𝐹𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 (𝑦𝑦). Because CRPS represents the integrated squared difference between the 
two CDFs, the pair of observation/forecast indicated by 1 will be assigned the best score. 
Conversely, forecasts indicated by 2 and 3 will lead to a higher CRPS. Indeed, although it has the 
same degree of sharpness as Forecast 1, Forecast 2 is not centered on the observation (i.e., this is 
a biased forecast). Regarding Forecast 3, even though it is centered on the observation, it is less 
sharp than forecasts 1 and 2. In summary, CRPS rewards the concentration of probability around 
the step function located at the observed value (Hersbach 2000). 

 
Figure 8-18. Schematic of the CRPS skill score. Three forecast PDFs are shown in relation to the 

observed variable in (a). The corresponding CDFs are shown in (b), together with the step function 
CDF for the observation (black heavy line). Forecast PDF 1 would produce a small (i.e., good) CRPS. 

This would not be the case for Forecast 2 or Forecast 3. Illustration inspired from Wilks (2014) 
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The CRPS can be further partitioned into the two main attributes of probabilistic forecasts 
described: reliability and resolution. The decomposition of the CRPS leads to:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = RELIABILITY –  RESOLUTION + UNCERTAINTY.  (8-22) 

The uncertainty54 term cannot be modified by the forecast system and depends only on the 
observation’s variability (Wilks 2014). Because the CRPS is negatively oriented, the goal of a 
forecast system is to minimize the reliability term and maximize the resolution term as much as 
possible. Hersbach (2000) and Lauret, David, and Pinson (2019) detail the procedures for 
calculating the different terms (reliability and resolution, respectively) for ensemble and quantile 
forecasts.  

It must be stressed that the decomposition of the CRPS provides quantitative overall measures of 
reliability and resolution, hence providing additional and valuable insight into the performance 
of a forecasting system.  

Similarly, to obtain skill scores used for evaluating deterministic forecasts (Coimbra et al. 
2013b), a CRPS skill score (CRPSS) can be derived to quantify the improvement brought by a 
new method over a reference easy-to-implement (or “baseline”) model, such as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
. (8-23) 

Negative values of CRPSS indicate that the new proposed method fails to outperform the 
reference baseline model, and positive values of CRPSS mean that the new method outperforms 
the reference model. Further, the higher the CRPSS, the better the improvement. Note that the 
uncertainty part of the decomposition of the CRPS (which corresponds to the score of the 
climatology) can be used as a reference baseline model. CRPSS and a mean-normalized CRPS 
are also discussed by Yang (2020). 

8.6.4.3.4 Interval Score 
The interval score (IS) specifically assesses the quality of interval forecasts. As shown by Eq. 8-
24 the interval score rewards narrow prediction intervals but penalizes (with a penalty term that 
increases with increasing nominal coverage rate) the forecasts for which the observation, 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜, is 
outside the interval. For a (1 − 𝛼𝛼) × 100% nominal coverage rate, the interval score reads as: 

      IS𝛼𝛼 =
1
𝑁𝑁
��𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

+
2
𝛼𝛼
�𝐿𝐿𝑖𝑖 − 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 �𝐼𝐼𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 <𝐿𝐿𝑖𝑖 +

2
𝛼𝛼
�𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑈𝑈𝑖𝑖�𝐼𝐼𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 >𝑈𝑈𝑖𝑖 

(8-24) 
 
 

where 𝐼𝐼𝑢𝑢 is the indicator function (𝐼𝐼𝑢𝑢=1 if U is true and 0 otherwise). 𝑈𝑈𝑖𝑖 and 𝐿𝐿𝑖𝑖 represent the 
upper �𝜏𝜏 = 1 − 𝛼𝛼

2
� and lower �𝜏𝜏 = 𝛼𝛼

2
� quantiles, respectively.  

 
54 Note that the term uncertainty defined in this framework is not the same as the “uncertainty for measurements and 
models” defined in Chapter 7. 
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A plot of interval scores for different nominal coverage rates might offer a consistent evaluation 
of the quality of interval forecasts. Consequently, such a plot could advantageously replace the 
sharpness diagram. 

8.6.4.4 Benchmark Probabilistic Models 
This section describes the benchmark probabilistic models used to gauge the performance of 
new proposed probabilistic methods using skill scores such as the CRPSS. By analogy with the 
deterministic approach, persistence ensemble (PeEn) models based on GHI (Alessandrini et al. 
2015) and on clear-sky index (David et al. 2016) have been proposed. The empirical CDF of a 
PeEn forecast is simply built with the most recent 𝑘𝑘 past measurements of solar irradiance. 
Considering an infinite number of past measurements, the PeEn turns to be the climatology. In 
numerous other fields of meteorology, climatology is often considered to be a reference that can 
be used to test the performance of probabilistic models (Wilks 2014). Indeed, the climatology is 
perfectly reliable, but it has no resolution. Also, an advanced climatology, called the complete-
history persistence ensemble, was proposed by Yang (2019b); this reference model corresponds 
to a conditional climatology where the time of the day is used as a predictor. In addition, for 
ensemble forecasts, the CRPS of the raw ensemble can serve as a benchmark. 

8.7 Summary and Recommendations for Irradiance Forecasting 
Solar power forecasting is essential for the reliable and cost-effective system integration of solar 
energy. It is used in for a variety of applications with their specific requirements with respect to 
forecast horizon and spatiotemporal resolution. To meet these needs, different solar irradiance 
and power forecasting methods have been developed, including physical and empirical models as 
well as statistical and machine learning approaches. Based on these developments, a number of 
forecasting services of good quality is available for users today. In the following, a summary of 
different forecasting methods and their applicability for different tasks is given, along with 
criteria that determine model performance as well as recommendations for forecast evaluation.  

• Different empirical and physical models are suitable for different forecast horizons. 
Generally, the spatiotemporal resolution of irradiance forecasts decreases with increasing 
forecast horizon. 

• Short-term irradiance forecasts from 10–20 minutes ahead resolving irradiance ramps 
with a temporal resolution of minutes or even less can be derived from ASIs using cloud 
motion-based methodologies. 

• Irradiance forecasts up to several hours ahead with typical resolutions from 10–15 
minutes can be derived from satellite data covering large areas, also using cloud motion-
based methodologies. 

• Irradiance forecasting from several hours to days ahead essentially relies on NWP 
models, with their capability to describe complex atmospheric dynamics, including 
advection as well as the formation and dissipation of clouds. 

The performance of the different forecast models depends on multiple factors that have different 
impacts depending on the forecast horizons: 

• The capability of the models to predict changes in clouds and irradiance 
• The performance of the models for irradiance retrieval/analysis  
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• The capability of the models to predict AOD, especially for DNI forecasting in arid 
regions 

• Input data to the model (parameters as well as the area covered by the input data) 
• Time for a model run (run-time determines a lower limit for the delay of observations at 

the time of forecast delivery)  
• Spatiotemporal resolution. 

Complementing empirical and physical models, statistical and machine learning methods are 
widely used in solar irradiance and power forecasting: 

• For time-series models and post-processing, which require reference values for training, 
the availability of irradiance and/or PV power measurements is crucial, as is proper 
quality control of the data. Satellite-derived data can also be used for training on 
irradiance. 

• Short-term forecasting up to approximately 1 hour ahead benefits greatly from the use of 
local online irradiance or PV power measurements as input; however, pure time-series 
approaches based on local measurements only are outperformed by approaches 
integrating empirical and/or physical model forecasts from a few minutes to hours 
onward, depending on the spatiotemporal scale of the forecasts and the climatic 
conditions of the forecast location. 

• Statistical and machine learning approaches are applied effectively for improving 
forecasts with empirical or physical models (post-processing). They can reduce 
systematic meteorological forecast errors. Training to PV power measurements in 
addition allows adaptation to the specifics of a given PV plant or to replace PV 
simulation models. 

• Machine learning models are increasingly applied to replace parts of empirical models, 
e.g., algorithms to compute optical flow in cloud motion approaches. 

State-of-the-art solar irradiance or PV power forecasting services do not rely on a single 
forecasting model but integrate and optimize different tools and data, with prominent examples 
given here: 

• High-resolution intrahour forecasting systems combine the use of local measurements 
and ASI data with empirical and machine learning approaches. 

• Forecasting systems for the intraday energy market up to several hours ahead integrate 
online measurements, satellite-based forecasts, and NWP model-based forecasts with 
statistical and/or machine learning approaches. 

• Forecasting systems from several hours to several days ahead use different NWP models 
as input in combination with statistical and/or machine learning approaches. 

Besides forecasting for single PV power plants, the estimation and forecasting of regionally 
aggregated PV power is important for grid operators. It involves the same modeling approaches 
described. Here, an additional challenge is that information on all the PV power plants 
contributing to the overall feed-in is often incomplete. Also, PV power is not measured at a 
sufficient resolution for most plants in many countries; therefore, upscaling approaches have 
been developed and are applied effectively to derive and forecast regionally aggregated PV 
power. Because of spatial smoothing effects, forecast errors of regionally aggregated PV power 
(normalized to the installed power) are much smaller than for single PV plants, depending on the 
size of the region and the set of PV plants contributing. 
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Forecast evaluations provide users with necessary information on forecast accuracy, assisting 
them in choosing between different forecasting services or assessing the risk when a forecast is 
used as a basis for decisions. The assessment of forecast accuracy should combine visual 
diagnostics (e.g., scatter plots or 2D histograms of forecasts and observations) and quantitative 
error measures (e.g., RMSE and skill in comparison to persistence). In addition to the model 
used, forecast accuracy depends on different factors, including the climatic conditions and the 
spatiotemporal scale; therefore, specific evaluation for a given application considering these 
factors is recommended—i.e., an evaluation for sites in a similar climate and with similar 
spatiotemporal resolutions. 

Beyond general information on the overall accuracy of a deterministic forecast, probabilistic 
forecasts provide specific uncertainty information for each forecast value, depending on the 
weather conditions. Probabilistic forecasts take the form of CDFs or PDFs. They are summarized 
by quantiles from which prediction intervals can be inferred. Quantiles can be estimated using 
either a parametric or a nonparametric approach. In the latter case, statistical or machine learning 
techniques can be used to estimate the quantiles. Although NWP ensemble members are not 
directly linked to the notion of quantiles, different propositions exist to infer a CDF from an 
ensemble. As an example, for deterministic forecasting, the assessment of the quality of the 
probabilistic forecasts is based on visual diagnostic and proper scoring rules. In particular, the 
CRPS seems to have all the features needed to evaluate a probabilistic forecasting system and, as 
such, could become a standard for verifying probabilistic forecasts of solar irradiance and power.  

Finally, forecasting solar irradiance should be evaluated in the context of strategies for the 
system integration of solar power, which aim to provide the necessary power to cover demand at 
any time. These strategies include spatial smoothing for grid-integrated PV and increasingly also 
the use of storage (batteries) and curtailment as well as in combination with other variable 
renewable energy sources, especially wind power. Applying these strategies reduces the 
variability of solar power as well as forecast errors. 
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9.1 Introduction and Background 
As discussed in previous chapters, solar resource evaluation covers a wide range of topics and 
applications. Most applications are related to projects involving solar radiation energy 
conversion. In this section, these are referred to as “solar energy projects,” and they include 
electricity production applications (photovoltaics [PV], solar thermal electricity), solar heating 
applications (central solar heating for district heating, local domestic heating and cooling), water 
and air applications (disinfection, desalination, decontamination), and energy conservation (for 
building applications). 

 

Figure 9-1. (Left) Different solar radiation products or evaluation methodologies described in 
previous chapters can be applied to (right) solar energy projects. Image by L. Ramirez 

The overall goal in applying solar resource data to solar energy projects is to help the project 
developer or investor identify the best estimates or methodologies to obtain the optimal solar 
resource and weather information to address each project stage; hence, this chapter summarizes 
available information and provides guidance on the types and uses of solar resource data that are 
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relevant at various stages in the project development. In addition, some information about how 
to generate data sets for energy simulations is also provided. Sections 9.2–9.5 discuss an 
idealized project development pathway, corresponding to what is shown in Figure 9-2. Section 
9.6 includes special needs of solar resource data for different types of solar projects. Finally, 
Section 9.7 provides a summary for further reference. 

 
Figure 9-2. Solar radiation needs at four typical stages of a hypothetical solar power project: (1) 
Google Earth view; (2) CSP Services measurement station of low-maintenance requirements; (3) 

Gemasolar concentrating solar power (CSP), 20 MW, 15 hours of storage capacity, under 
construction; (4) Copper Mountain PV, 552 MW. Image by L. Ramirez 

The exact needs for solar resource data for a project depend on the project characteristics and 
how it is financed. Typically, a large solar power project requires several years of high-quality 
modeled data and at least 1 year of on-site measured data during the final stages of the project 
execution. The on-site data need to be collected using the measurement procedures described in 
Chapter 3 and in formats directly relevant to the type of technology being considered. The 
modeled radiation data can be obtained from the methodologies described in Chapter 4, and 
further meteorological parameters can be obtained as described in Chapter 5. 

For the first stages of the project execution, project developers can rely on several information 
sources. In most countries, solar radiation data sources include limited on-site information of 
varying quality, such as: 

• Nearby measurements that might or might not be precisely applicable to the site because 
of spatial and temporal variability 

• Satellite-derived irradiance estimates 
• Estimations from reanalysis of numerical weather prediction (NWP) models.  
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Assuming that no high-quality on-site data are available during the site screening and 
prefeasibility stages, energy estimates must be derived from these three sources or from 
improved data sets from commercial vendors. During feasibility assessments, including 
engineering analysis and due diligence, some period (1 year or more) of high-quality 
measurements are assumed to be available at the site; however, these relative short-term 
measurements must be used by the solar resource provider and combined with long-term 
modeled data to ultimately derive a long-term record that removes the bias in the original 
modeled time series while capturing seasonal trends and the interannual variability of solar 
resources for the site. This merging process is usually referred to as “site adaptation,” and it is 
described in Chapter 4, Section 4.8. During the project’s operation, on-site, high-quality, ground-
based measurements are normally necessary to evaluate how well the system is performing in 
real time compared with its theoretical output. These on-site measurements can be supplemented 
to some extent, or in some cases replaced, by ongoing estimations, such as satellite-derived data 
sets for the region or for the specific site. 

Figure 9-3 provides a generalized view of solar radiation data requirements throughout various 
conceptual stages of a project’s life cycle. In a solar power project, some questions must be 
addressed at each stage, as presented in the following sections. Sections 9.1.1–9.1.4 provide 
some specific information that could help in the interpretation of Figure 9-3 and also present 
topics that are addressed in sections 9.2–9.5. 

 
Figure 9-3. Flowchart of the solar radiation data needs (in green) for a hypothetical (large) solar 

power project. Image by L. Ramirez 
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9.1.1 Site Selection for Solar Energy Projects 
During the first stages of a project, some questions related to its exact location might still be 
open:  

• What proposed site location(s) need(s) to be evaluated? 
• Has a single site been chosen?  
• Is the developer making a choice from among two or more sites or still “prospecting” 

from a wider area?  
If choosing from among multiple sites, the developer would benefit from using a geographic 
information system (GIS), maps, and other graphic techniques to evaluate the estimated resource 
as well as its variability and uncertainty. 

• What temporal and spatial characteristics of the data sources are available to the 
developer, and how do these characteristics influence the evaluation of system 
performance?  

Regarding temporal characteristics, measured solar data apply to a specific location and are 
usually recorded at short time intervals (1–10 minutes); then they are averaged to the desired 
time interval (often hourly in the early project phase). Modeled data, such as satellite-derived 
data, usually represent snapshots in time because of the scanning characteristics of spaceborne 
radiometers, and they are typically considered to represent averages from 5–60 minutes.  

For most modeled gridded databases derived from geosynchronous satellite imagery, the 
individual pixel (or cell) size ranges from 1–10 km, but it depends on the specific model 
configuration, the specific instrument, and the pixel’s geographic location. In some cases, data 
providers might aggregate several pixels into one grid cell, so the user needs to determine the 
exact spatial resolution based on the information associated with the chosen data set. 

9.1.2 Predicted Plant Output Throughout the Project Life 
Important questions that need to be addressed throughout the plant’s operational phase include 
the following: 

• What will be the energy produced during specified time periods (based on the project’s 
financing and revenue generation schemes) throughout the project’s life? 

• How is the appropriate time series of solar radiation data generated to address the 
required energy simulation of a specific project? 

• How can data sets provide the required projections throughout the next 20–30 years so 
that the cash flow (revenue minus expenses) can be evaluated throughout the life of the 
project? 

Use of a typical meteorological year (TMY) (Wilcox and Marion 2008; Cebecauer and Šúri 
2015) has traditionally been a popular method for solar system simulation. Much of the energy 
simulation software in the commercial and public domain still relies on TMYs to describe the 
hourly characteristics of the local solar resource. By design, however, a TMY represents only 
average or median (P50) conditions, and thus it does not provide information about the real 
variability or possible extremes throughout the system lifetime. Moreover, the degree of 
interannual variability can differ at different locations (Habte et al. 2020). Also, decadal 
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variability of the solar resource occurs, and since the last half of the 20th century at least, it has 
been dominated by variations in man-made aerosol emissions (Wild 2016). In regions where 
such pollution is being reduced, TMY data based on data from the previous decades will 
underestimate the future solar resource—and vice versa in regions with increasing pollution. 
Typically, on-site measured data are not available for more than 1 year at the final stage of 
project preparation. Time series of satellite-derived modeled data covering the last 15–25 years 
are available from various (mostly commercial) providers. Longer term (up to 55 years) modeled 
irradiance data sets might be available from specific sites, such as from the earlier versions of 
the National Solar Radiation Database (NSRDB) in the United States.55 Long measured time 
series covering many decades also exist but for only a few stations around the world (Wild et al. 
2017). Various aspects of variability are discussed in sections 9.2.5, 9.2.6, 9.3.2, and 9.6. 

9.1.3 Solar Radiation Needs During Plant Financing, Construction, and Due 
Diligence Processes 

Solar radiation information is necessary to answer key questions relevant to financing solar 
projects: 

• How reliable is the plant output prediction? (This is important for addressing financing 
risks.) 

• What is the expected uncertainty of the solar radiation estimations? 
• What is the margin of error in the annual (or monthly) cash flow estimate? 

Once the plant is under construction, different situations can occur. For example, in cases where 
the developer is not the final owner or is not in charge of the operation and maintenance, an 
independent due diligence of expected project performance is included in the evaluation process. 
Independent solar energy consulting services will likely be requested by financial investors to 
perform due diligence. Previous predictions of plant output should be updated as new solar 
radiation data (measurements or modeled estimates) become available through these due 
diligence activities. Even if the developer is the final owner, the uncertainty in the production 
results should be updated as improved data become available. All solar resource predictions that 
were obtained from different sources must be compared, and the corresponding uncertainties 
must be reconciled. 

9.1.4 Data Requirements for System Operations and Performance Evaluations 
During system operations, the following questions must be addressed: 

• What kind of irradiance data are required to conduct studies on grid integration, load 
matching, or system intermittency? 

In this case, daily, hourly, or subhourly data are typically needed for a specific time period, 
which cannot be provided by TMY data. 

• How does the temporal variability and intermittency in the solar resource affect the 
plant’s performance? 

 
55 See https://nsrdb.nrel.gov.  

http://rredc.nrel.gov/solar/old_data/nsrdb/
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Most large solar energy projects are designed to provide electricity to the electric grid. In many 
cases, utilities buy electricity from producers at different rates during the day, depending on their 
load pattern, which can also vary seasonally; thus, it is in the interest of the solar power plant 
owners and operators to maximize electricity production when its value is largest and to 
minimize curtailment, which can occur during times of low load and high solar output. 
Maximizing output at times of high prices and minimizing curtailment is made possible by using 
energy storage systems. Optimizing the revenue from solar power plants under these conditions 
requires much more information than the estimate of the annual average production based on a 
TMY. For example, if a solar power plant includes significant storage capacity, a complex daily 
analysis—including measured on-site irradiance and forecasts—is needed to determine when the 
system will fill storage, and to which level, versus when it will provide power directly to the grid 
during daylight hours. Storage greatly mitigates the effect of system intermittency, but accurate, 
real-time, on-site measurements are needed to make the best decisions under these operating 
conditions. Further, to anticipate how solar output can best match projected load in ways that 
optimize revenue, accurate solar forecasts up to 1 day ahead, continuously improved by real-
time data, constitute the main tool to guide system operations. Forecasts for more than 1 day 
ahead are also required for electricity market participation and maintenance scheduling. Case by 
case, the system operator or local electric utility might need to disrupt the normal production 
schedule of solar power plants and ask their operators to increase (if the plant is equipped with 
storage) or decrease (curtail) production to avoid grid instability. Again, this situation requires 
high-quality, real-time irradiance measurements and solar forecasts. 

9.2 Data Applications for Site Screening and Performance 
Assessment 

9.2.1 Site Screening  
In the early stages of project development, a prefeasibility assessment of possible sites is 
typically undertaken. A desired outcome at this stage is the estimated annual energy production 
that could be expected from the solar energy system in various proposed locations. Historical 
solar resource data sets are generally used at this stage, often in the form of maps or from 
publicly available or commercial gridded data, such as those discussed in Chapter 4 and Chapter 
6. These data sets use a fairly consistent methodology to reliably identify the regions of highest 
solar potential. Depending on the type of technology used for the solar installation, this potential 
can refer to global horizontal irradiance (GHI), global tilted irradiance (GTI), or direct normal 
irradiance (DNI). The maps should be used to make a preliminary assessment of the solar 
resource, assuming a relatively large potential for error (up to approximately 10%–12 % for GHI 
or GTI and significantly larger for DNI), depending on the data provider and region; thus, if a 
desirable level of solar resource for a solar power plant project is a daily mean of 7.0 kWh/m2, 
sites with mapped resource values down to approximately 6.0 kWh/m2 should be considered. In 
some cases, a project developer could first attempt to build a plant based on concentrating solar 
technologies (CST); if the DNI resource turns out to be insufficient, a PV project could be 
considered instead and still be profitable.  

A “first-order” prefeasibility assessment includes the analysis of potential for various 
technologies. For example, studies were conducted for the southwestern United States by the 
National Renewable Energy Laboratory’s (NREL’s) Concentrating Solar Power (CSP) Program 
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(Mehos and Perez 2005)56 to identify the most optimal sites for CSP installations. Using GIS 
screening techniques, resource maps were developed that highlighted regions potentially suitable 
for project development after considering various land-use constraints, such as protected land 
areas, sloping terrain, and distance from transmission lines (Figure 9-4). The results of these 
studies show that even with these constraints, vast areas in the southwestern United States are 
potentially suitable for CSP development. Maps such as these are valuable to project developers 
to highlight specific regions where various levels of site prospecting and prefeasibility analysis 
can take place.  

Other studies are being done by various groups to evaluate the solar potential of PV installations 
on building roofs at the scale of a specific city. Such studies require GIS data at a very high 
resolution (better than 1 m), which are usually provided by lidar techniques and sophisticated 
shading analyses (Huang et al. 2015; Jakubiec and Reinhart 2013; Le et al. 2016; Martínez-
Rubio et al. 2016; Mohajeri et al. 2016; Santos et al. 2014; Tooke et al. 2012). 

 
Figure 9-4. CSP prospects of the southwestern United States. GIS analysis for available site 

selection using the DNI resource, land use, and 3% terrain slope. Image by NREL (Mehos and 
Perez 2005) 

Navarro et al. (2016) compared CSP potential assessment methodologies and showed the need 
for providing intercomparable results while also noting the importance of constraints such as 
terrain slope. A methodology called land constraints, radiation, and slope (LRS) considerations 
was proposed, harmonizing the treatment of these three main inputs. Figure 9-5 shows how the 
slope consideration (1%, 2%, or 3% of maximum slope) affects the site selection for what 

 
56 See www.nrel.gov/csp/data-tools.html.  

http://www.nrel.gov/csp/data-tools.html
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became a real CSP power plant in Spain. Only after accepting a maximum slope of 3%, the 
whole power plant was developed in a suitable area. 

With the introduction of powerful, easy-to-use software tools and web pages—such as the 
System Advisor Model (SAM),57 Greenius,58 RETScreen,59 or Global Atlas for Renewable 
Energy60—many analysts now expect to use maps and time-dependent modeling of their 
prospective solar systems as part of the preliminary analysis. Considerable care must be taken to 
choose the correct irradiance data sets for input to the model. Experts recommend multiple years 
of at least hourly input data, rather than data from only 1 year or from TMYs, to assess the 
effects of interannual variability of the solar resource on year-to-year system performance. Each 
hourly data set should be evaluated at a minimum to determine whether the monthly mean 
values from hourly data match the best estimate of the monthly mean values at the proposed site 
(Meyer et al. 2008). In most cases, the bankability of large projects requires on-site 
measurements during at least 1 year to validate the long-term modeled time series and to correct 
them, if needed, using an appropriate site adaptation technique (see Chapter 4, Section 4.8). 

  

  

Figure 9-5. Buffer around the Orellana solar thermal energy plant (Spain) (upper left) and the 
suitable areas by the (upper right) LRS1, (bottom left) LRS2, and (bottom right) LRS3 

methodologies with maximum slopes of 1%, 2%, and 3%, respectively. Suitable zones are shown 
in green. Images from Navarro et al. (2016) 

 
57 See https://sam.nrel.gov/. 
58 See http://freegreenius.dlr.de/. 
59 See http://www.nrcan.gc.ca/energy/software-tools/7465. 
60 See https://irena.masdar.ac.ae/gallery/#gallery. 

https://sam.nrel.gov/
http://freegreenius.dlr.de/
http://www.nrcan.gc.ca/energy/software-tools/7465
https://irena.masdar.ac.ae/gallery/#gallery
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9.2.2 Influence of Aerosols 
For solar energy projects, a key step in site screening is to implement a concept called clean air 
prospecting. This is of special importance for CST, including solar thermal energy and other 
concentrating technology options, such as concentrating PV, because DNI is more strongly 
affected by the aerosol optical depth (AOD) than GHI or GTI are. AOD is a unitless optical 
characteristic of particles that summarizes their potential attenuation effect through scattering 
and absorption along a vertical atmospheric column. It is most usually reported at a wavelength 
of 550 nm, but it is sometimes also reported at 500 nm or 1000 nm, depending on the data 
source. Converting AOD from one wavelength to another is possible if the Ångström 
wavelength exponent is known (Gueymard 2019; Sun et al. 2021). Under an ideal aerosol-free 
atmosphere, AOD would be 0. At the other extreme, the sun disc would be obscured behind a 
thick aerosol layer when its AOD reaches approximately 5–7. In deserts and other areas with 
high solar resource, most sites have low annual average cloud cover, but dry conditions might 
favor a somewhat permanent suspension of dust in the air; thus, over these areas, the annual 
average DNI is strongly influenced by AOD. Understanding the AOD characteristics is vital to 
assessing the solar resource and the performance of CST installations.  

AOD is a measure of the optical attenuation effects caused by various types of particles in the 
atmosphere, collectively called “aerosols.” These include vegetation exudates, dust and sand 
particulates, air pollution, smoke from wildfires or agricultural burning, and sea salt (near 
coastlines). Over arid or desert areas, the average AOD could be sufficiently low for CST plants, 
even if dust events occur on an infrequent basis. Note, however, that the higher the annual 
average AOD, the higher its temporal variability (Gueymard 2012), which can be an issue for 
CST projects. 

The analyst should consider the following questions about the site: 

• What are the sources of potential aerosols? These could include:  
o Dust storms 
o Air pollution 
o Fires 
o Proximity to urban areas 
o Proximity to dirt roads with heavy traffic or to areas where biomass burning is 

frequent 
o Proximity to fossil fuel power plants, mining facilities, etc. 

• Does the area have good visibility most of the time? Are distant hills or features visible 
without the effects of haze? 

o No visible haze would indicate that the AOD is low, and therefore the irradiance 
is likely to be well represented by modeled map values. 

o If the area is known to frequently have some form of visible haze, aerosols are 
likely to have an influence on the irradiation at the site. Further research or 
measurements might be necessary. 

Typically, higher uncertainty in AOD can exist over mountainous areas, coastlines, deserts, or 
near urban areas. Because such areas could be good candidates for solar energy for economic 
and infrastructure reasons, additional measurements (of AOD and/or irradiance) might be 
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necessary to resolve whether a site is sufficiently protected from sources of aerosols. In addition 
to decreasing the solar resource, aerosols can also deposit on solar collectors or mirrors and 
negatively impact the production of solar power. In such cases, a soiling analysis might be 
necessary. 

Aerosol data sources are varied and have been reviewed (Gueymard 2019; Gueymard et al. 
2018). In summary, the best source of data is from a local ground-based sunphotometer, but 
stations equipped with such instrumentation are scarce in many areas of the world. Gridded 
sources of data at the continental or global scale are provided by spaceborne sensors or 
reanalysis databases. The downside is that their AOD retrievals or predictions are typically 
biased (Bright and Gueymard 2019; Gueymard and Yang 2020; Petrenko and Ichoku 2013; 
Ruiz-Arias et al. 2015). When using AOD as an input to a radiation model to evaluate DNI, a 
simple rule of thumb is that an error of 0.1 AOD unit in the input induces an error of 
approximately 10% of opposite sign in the DNI output (Gueymard 2012). This can explain the 
bias that is sometimes found in DNI modeled databases (Gueymard 2011). Reducing the AOD 
bias is a technique used for the effective site adaptation of modeled DNI data (Gueymard et al. 
2012; Polo et al. 2016); see also Chapter 5. 

9.2.3 Volcanic Aerosols in the Stratosphere 
Debris from volcanic eruptions affect the solar resource over large areas (at the country, 
continental, or global scale) and have radiative effects that can last up to a few years, depending 
on the eruption’s strength and location. The main impact of volcanic aerosols on the solar 
resource arises when significant amounts of sulfur dioxide (SO2) are ejected into the stably 
stratified stratosphere. Smaller volcanic eruptions do not reach the stratosphere, and thus they 
have only short-lived, local effects. SO2 is converted into sulfuric acid aerosol droplets that 
scatter solar irradiance very efficiently. These droplets turn into aerosols, thus increasing the 
total AOD and affecting DNI more than GHI. The AOD of the droplets decays exponentially 
with a decay time from 1–2 years (Crowley and Unterman 2013; Robock 2000). Overall, the 
droplets and volcanic aerosols can stay in suspension for several years after an eruption. For 
instance, El Chichón (1982) and Pinatubo (1991) impacted the solar resource globally for up to 
approximately 3 years. 

Most solar resource data sets do not extend that far in the past and thus do not cover any large 
volcanic event. One exception is the NSRDB (Wilcox 2007), whose data can be used to estimate 
the effect this eruption had on the solar resource (Vignola et al. 2013). The reduction in DNI 
reached up to approximately 20% at midlatitude sites in the Northern Hemisphere a few months 
after the eruption, which in turn had an even larger negative impact on the electricity production 
of CST plants (Michalsky et al. 1994). The probability of a volcanic eruption as strong or 
stronger than Pinatubo (stratospheric AOD ≥0.2) is significant on a decadal basis (Hyde and 
Crowley 2000). 

9.2.4 Choosing Modeled Irradiation Resource Data  
During the first stages of a solar project, solar radiation information might be available from 
different sources, as discussed in Chapter 4 and Chapter 6. Having many sources of irradiance 
data is better than having none, but the question of selecting the best possible source then arises. 
This can be done through detailed comparisons between them and validations against high-
quality ground measurements. Some concepts related to such tasks are stated in the following. 
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The proposed definitions of variability and error can aid in better understanding the observed 
differences among databases, though these definitions are not always agreed upon by all analysts 
or applicable to all possible applications. In addition to these concepts, detailed discussions on 
uncertainty definition, characterization, and calculation are provided in Chapter 7. 

9.2.4.1 Variability 
Variability is the expected or actual dispersion of a variable during a specific period of time 
(temporal variability) or over a specific area (spatial variability). It is often expressed as the 
coefficient of variation (COV) for variables having a normal distribution (Calif and Soubdhan 
2016), as the variance for any other known statistical distribution, or as the interquartile range 
when the distribution is unknown. COV is obtained by dividing the standard deviation by the 
mean of the population or sample. Temporal variability can be analyzed at various timescales 
(Bengulescu et al. 2018). 

Variability relates to the analyzed time period (e.g., yearly variability of daily GHI, long-term 
variability of DNI) or to a given geographic area (e.g., spatial variability of DNI over an area of 
50 km by 50 km). See detailed information in Section 9.2.5. 

9.2.4.2 Error 
Error is the difference (or deviation) between a measured or estimated value versus the “true” 
value of the measurand/quantity. Because the latter value cannot be determined, in practice a 
true conventional value must be measured or estimated by an adequate procedure using 
specialized and well-maintained instruments, harmonized protocols, or international standards. 
The individual error at instant i can be expressed as: 

 𝑒𝑒𝑦𝑦𝑖𝑖 =  𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖 (9-1) 

where 𝑒𝑒𝑦𝑦𝑖𝑖is the error of the estimate 𝑦𝑦𝑖𝑖, and 𝑥𝑥𝑖𝑖 is the value of the quantity. 

Common error expressions are mean bias error, mean absolute error, mean square error, and root 
mean square error. When the most probable value is uncertain itself (which is the most general 
case), the error should be referred to as a difference or a deviation; then the letter e is replaced by 
d without any change in the calculation (Gueymard 2014). 

Typically, some individual errors or differences are of a higher magnitude than all uncertainties. 
(See detailed information in Chapter 7.) In general, the accuracy of modeled data is reported in 
terms of the conventional error statistics mentioned. In addition, Espinar et al. (2009) proposed a 
new statistical indicator, called the Kolmogorov-Smirnov integral. It evaluates the area between 
the distribution functions from the two tested samples. Gueymard (2014) reviewed this and 
many other statistical indicators for solar radiation series comparisons and applied them to the 
performance evaluation of a variety of clear-sky radiation models. 

A study conducted by the Management and Exploitation of Solar Resource Knowledge project 
in Europe (Beyer et al. 2008) provided insights into the spatial distribution of irradiance 
variability by cross-comparing five different data sources. Inherent differences were found 
between databases based on in situ (ground) measurement interpolations and those based on 
satellite observations as well as in the methods used to process such data. The databases relying 
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on the interpolation of ground observations were sensitive to the quality and completeness of 
ground measurements and to the density of the measurement network. Terrain effects (e.g., 
shadowing by surrounding terrain) played a role in solar radiation modeling over hilly and 
mountainous regions. The spatial resolution of the input data and the selected digital elevation 
model were identified as factors with direct impact on the accuracy of the estimates. Finally, to 
compare modeled data properly, particularly under clear-sky conditions, it is important to 
consider how each model deals with cloud identification and AOD characterization (Ruiz-Arias 
et al. 2016). This is particularly important for DNI because of its higher sensitivity to AOD than 
GHI (Ruiz-Arias et al. 2019). 

The quality and spatial detail of satellite-derived or numerical databases are determined by the 
specific input data used in the models. As can be expected, the main parameters describe the 
cloud properties and the optical transparency of the atmosphere in relation to aerosols and water 
vapor (Ineichen and Perez 2002; Ruiz-Arias et al. 2016). Regarding DNI more specifically, AOD 
is the most important variable under clear-sky conditions (Gueymard and George 2005). (See 
also Section 9.2.2.) Cebecauer, Šúri, and Gueymard (2011) provided a comprehensive and 
qualitative review of the different factors (including terrain) affecting the accuracy of DNI 
modeling. 

The studies conducted so far provide only a preliminary outline of the state of the art of current 
knowledge in irradiance modeling. These studies still do not fully address the needs of the solar 
energy industry, so further work is needed to improve knowledge and decrease uncertainties. In 
most cases, similar studies must be performed for the sites of interest within an individual 
project. (See Section 9.1.1 and Section 9.2.1.) 

9.2.5 Variability of the Solar Resource 
Variability is a wide-ranging term that can characterize the solar resource in many ways, either 
from a spatial or temporal perspective. In the latter case, all temporal scales can be considered, 
depending on context, from the subsecond to multiyear scales. Temporal variability, if well 
characterized for a climate region, can be useful to determine the suitability of a short-term data set to 
produce valid long-term statistics. For instance, the term can be applied to refer to the interannual 
variability of the resource. The example in Figure 9-6 shows the interannual variability in 
monthly DNI at Daggett, California, in terms of monthly average daily total irradiation. 

As mentioned above, the long-term dispersion of the solar resource is often characterized by the 
COV, which is the unitless ratio between the standard deviation and mean (Habte et al. 2020; 
Calif and Soubdhan 2016; Gueymard and Wilcox 2011): 

  𝜎𝜎𝑡𝑡 =  ��1
𝑛𝑛
∑ �𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − 𝑌𝑌𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤�������

2𝑖𝑖=𝑛𝑛
𝑖𝑖=1 � (9-2) 

  COV = 𝜎𝜎𝑡𝑡
𝑌𝑌𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤������� . (9-3) 

where 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 is the annual irradiance of the individual n years, and 𝑌𝑌𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤������ is the mean of 
irradiance of all years. 
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Long-term oscillations in GHI and DNI are also important because of the succession of periods 
known as “dimming” and “brightening” that affect both climate change and the extrapolation of 
the historical solar resource into the future (Müller et al. 2014; Wild et al. 2015). Further, it is 
important to consider these sources of variability in the context of solar performance forecasting.  

 
Figure 9-6. Example of direct-beam monthly average daily total (kWh/m2) illustrating interannual 

and seasonal variability from 1961–2018 in Daggett, California. Image by NREL 

The term variability is also used to describe the spatial variability of the resource in a 
climatological context. Spatial variability can help determine the applicability of a particular 
data set for a nearby location, possibly saving the need for additional measurements. In this case, 
variability characterizes microclimatic features and regional resource gradients. An example is 
provided in Figure 9-7, which shows the climatological GHI resource distribution over the Island 
of Oahu, Hawaii. Similarly, Figure 9-8 shows the spatial variability of DNI and GTI over areas 
50 by 50 km throughout the United States in terms of COV (Gueymard and Wilcox 2011).61 

 
61 Such spatial and temporal variability maps are available from https://www.nrel.gov/grid/solar-
resource/variability.html. 

https://www.nrel.gov/grid/solar-resource/variability.html
https://www.nrel.gov/grid/solar-resource/variability.html
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Figure 9-7. Example of microclimatic spatial variability for the Island of Oahu. The 1-km resolution 

map displays mean hourly GHI in W/m2. Image from SolarAnywhere V3.0 (2015) 

 
Figure 9-8. Spatial variability in (left) DNI and (right) GTI over the continental United States in 

terms of percentage of COV. Images from NREL  

From a resource assessment perspective, the term variability is associated with the time/space 
impact of weather and with the cycle of days and seasons on the output of solar systems. This 
output can vary from zero to full power, and it is outside the control of plant operators. 
Understanding the solar resource’s variability is key to optimally integrating the power output of 
solar electric systems into electric grids. This is discussed further in Section 9.6. 

Space/time variability has two causes: one is fully predictable and is the result of the apparent 
seasonal and daily motion of the sun in the sky and the sun-Earth distance; and the other results 
from the motion of clouds and, to a lesser extent, of aerosols in relation to weather systems. It is 
useful to first consider the temporal and spatial scales involved and how they impact the 
available solar resource. 
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9.2.5.1 Temporal Scale  
Beginning with an intuitive example (Figure 9-9), a single location on a partly cloudy day will 
experience a high degree of temporal variability because of changes in the sun’s position and the 
motion of clouds; however, the solar energy accumulated during several days at that same 
location exhibits less variability. Variability in GHI becomes small as the temporal integration 
increases to 1 year and more, but that in DNI or even GTI can still be significant (Gueymard and 
Wilcox 2011). In addition, investigating intra-seasonal variability can provide insightful 
information. In some areas, for example, summers might exhibit less variability than winters, 
e.g., if there are typically only a few cloudy days in summer and not-too-dissimilar numbers of 
cloudy and sunny days in winter. Adding or subtracting a sunny day during the summer does not 
significantly affect the monthly average in this case, contrary to what can happen in winter. In 
many temperate areas, on the other hand, low variability caused by consistently cloudy 
conditions is typical in winter, whereas a succession of clear and cloudy days is typical in 
summer (high variability). 

Figure 9-10 shows a representation of interannual variability over the Americas, demonstrating 
some geographic dependence as a result of microclimate or long-term climatic fluctuations. 
Studies of GHI and DNI distributions in the United States show that GHI’s interannual 
variability typically ranges from 2%–6% in terms of COV, whereas the variability of DNI is 
between 5% and 15%, about twice as much (Habte et al., 2020; Gueymard and Wilcox 2011). 
A single year can deviate much more from the long-term average. Gueymard and Wilcox (2009) 
analyzed the long-term data from four stations with continuous high-quality measurements 
spanning more than approximately 25 years to examine how many individual years would be 
required to converge to the long-term mean and whether the interannual irradiance variability 
changes significantly from one site to another. Sorting the data from the most exceptional years 
(largest anomalies) to the most typical years (smallest anomalies), the results showed that, first, 
there is much lower interannual variability in GHI than in DNI. In the examined stations in the 
United States, GHI is almost always within ±5% of the true long-term mean after only 1 year of 
measurements (see Fig. 9-11). The situation is quite different for DNI. After only 1 year of 
measurements, the study showed that the estimate of the average DNI is no better than ±10%–
±20% of the true long-term mean. Note, however, that the worst years were associated with 
strong volcanic activity, which significantly impacts DNI. 

Another interesting question is whether it is likely that good years with high irradiation occur in 
groups or are independent from the previous year’s irradiation. Tomson, Russak, and Kallis 
(2008) showed that the mean annual GHI in any year is virtually independent from that of the 
previous year. 

9.2.5.2 Spatial Scale  
Increasing the solar generation footprint from a single location to a region, and even to a 
continent, considerably reduces intermittency. Increasing this footprint to the entire planet 
eliminates it almost entirely (Figure 9-12). This spatial integration effect is often referred to as 
the (geographic) “smoothing effect,” which is discussed next. 
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Figure 9-9. Variability of global irradiance time series at a North American location shown as a 

function of integration time. The figure includes 1 day of 1-minute data, 4 days of hourly data, 26 
weeks of weekly data, and 16 years of yearly integrated data. Image from Perez et al. (2016) 

     

Figure 9-10. Interannual variability in (left) GHI and (right) DNI using the 1998‒2017 NSRDB data 
expressed in terms of percentage of COV. Images from NREL 
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Figure 9-11. Number of years to stabilize DNI and GHI at (clockwise from upper left) Burns, 
Oregon; Eugene, Oregon; Hermiston, Oregon; and Golden, Colorado. Specific sorting (along the 
X-axis) from the most exceptional years (largest anomalies) to the most typical years (smallest 

anomalies). Images from Gueymard and Wilcox (2009) 

 
Figure 9-12. Variability of daily global irradiance time series for 1 year as a function of the 

considered footprint. Image from Perez et al. (2016) 

0

100

200

300

400

Da
ily

 M
ea

n 
Irr

ad
ia

nc
e 

(W
/m

2 ) Single Point
Continental US
Entire Planet



Chapter 9-18 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

9.2.6 Variability Impacts 
Both the temporal variability and the spatial variability are specific to a site (or area) and period. 
Temporal variability could change seasonally, as mentioned. The two types of variability 
directly affect solar resource analyses for various reasons, including: 

• Measured data sets often contain data gaps due to instrument failure or various problems, 
such as dew or snow on instruments. To avoid any discontinuity in the time series, 
analysts are typically tempted to use some form of temporal interpolation to fill the gaps. 
This is convenient but can significantly increase the overall uncertainty. The magnitude 
of the overall uncertainty depends on the time period, the method used to fill the gaps, 
and the data used to fill the gaps. Moreover, replacing extended data breaks with 
climatological average values tends to underestimate the actual temporal variability. 

• If no on-site measurements exist at the project’s site but some exist at one or more 
“nearby” sites some distance away, analysts are tempted to extrapolate or average the 
data from those alternate sites. Depending on the distance and spatial variability over that 
region, this might or might not introduce significant errors. 

Interannual and long-term variability (decadal oscillations) need to be considered to correctly 
project the measurements or modeled data of the past into the future for design and bankability 
purposes. These considerations explain why an evaluation of variability is an important step for 
accurate solar resource assessment at any location of interest. Further, the expected variability in 
the very near future (minutes to days) is also essential information for the correct operation and 
profitability of existing solar power plants. This can be estimated with appropriate solar forecasts 
(see Section 9.5.3). 
Various studies have analyzed the spatial or temporal variability of the solar resource at the 
country or continental scale—e.g., Habte et al. (2020), Castillejo-Cuberos and Escobar (2020), 
Badosa et al. (2013), Davy and Troccoli (2012), Gueymard and Wilcox (2011), Lohmann et al. 
(2006), and Perez-Astudillo and Bachour (2015). A general finding is that the spatiotemporal 
variability of DNI is larger than that of GHI for a given location. 

From an application perspective, the solar resource variability translates into power production 
variability, which could impact the stability of electric grids or the economics of the facility. One 
important question that has received specific attention is: How much is the temporal variability 
at one power plant site correlated with that of another site some distance away? This is discussed 
further in Section 9.6. 

Predicting the behavior of existing or future solar systems assumes that the temporal and spatial 
irradiance variability can be adequately characterized with measurements and/or modeled data. It 
is easy to take care of the deterministic variability caused by location, date, and time of day. 
What matters most is the variability (temporal or spatial) in weather and climate. 

With some knowledge about the interannual irradiance variability at a specific site, users can, in 
principle, select a particular experimental period to adequately characterize the solar resource. 
Ideally, such on-site measurement campaigns should last many years; however, in most cases, 
practical reasons limit them to 1 year or less, which increases the uncertainty in the long-term 
estimates. Likewise, with knowledge of the spatial variability over the area around a 
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measurement station, users can evaluate the applicability of those measurements to a location 
some distance away using the appropriate extrapolation or interpolation methods. Knowledge of 
variability then becomes valuable when deciding how long to make measurements at a particular 
location and whether the characteristics of the solar resource at that location can be extrapolated 
to other nearby locations. 

With such variability maps or statistics, users can better understand the extent of measurements 
required to best characterize the solar resource for a particular application. In areas with low 
interannual variability, a shorter measurement period could suffice. In areas with low spatial 
variability, a measurement station could represent the solar resource at nearby locations (e.g., 
within 10–50 km), avoiding the need for additional measurements. An analyst can use this 
information to build better confidence in a data set as being sufficient for an analysis and can use 
these data to understand the consistency of future solar power plant performance and how that 
relates to the economic viability of a particular location. 

One remaining question is whether solar resource data of past decades can represent that of the 
future, considering that the power production of solar installations needs to be predicted up to 20 
years into the future. To that end, the long-term trends in GHI and DNI need to be investigated 
in relation with climate cycles known as dimming and brightening (Müller et al. 2014; Pfeifroth 
et al. 2018) because of their impact on the yield predictions of solar installations (Müller et al. 
2015). 

Some statistics that are commonly used to describe the temporal variability of irradiance 
components assume that their distribution is Gaussian, which is a typical assumption (Cebecauer 
and Šúri 2015). Fernández-Peruchena et al. (2016) tested that assumption in annual GHI and in 
DNI time series. Regarding GHI, results from two normality tests indicated that the Gaussian 
assumption cannot be rejected at all 10 tested locations. In the case of DNI, five tests were 
applied to the annual DNI series for evaluating the Weibull goodness of fit at six locations, and 
the results suggested that such a distribution is more appropriate than a Gaussian distribution. 
Considering all these results, the temporal variability needs to be further analyzed to be able to 
clarify whether annual, monthly, or seasonal solar radiation values can be properly assumed (1) 
as independent; (2) as only random samples of the same population; or, conversely, (3) as 
representative of different probabilistic models having, for example, a stationary behavior. 

As mentioned in Section 9.1.2, TMYs eliminate all interannual variability by design. 
Nevertheless, they can be used to investigate the spatial variability of the solar resource 
wherever gridded TMY databases are available (Habte et al. 2014). 

9.3 Solar Radiation Data Requirements for Feasibility Assessments  
In addition to selecting one or more candidate sites for an engineering feasibility assessment, 
solar power plant project developers need to ensure that they have meteorological data sets, 
including solar radiation and other meteorological variables, that can guarantee a reliable 
estimate of the system performance during the project life. There are different possible situations 
depending on the availability of measured data sets and/or of other modeled data sources. 
Because long-term, high quality ground measurements of solar radiation are rarely available, at 
least one whole year of local ground measurements and 10 years of modeled data are required to 
guarantee the bankability of large solar energy projects (Ramírez et al. 2012).  
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Solar system simulations often use an annual meteorological data set intended to be 
representative of the long-term average meteorological conditions of the project site, usually 
referred to as TMY or typical reference year (TRY). Such TMYs are discussed in Section 6.3. 
Additionally, it is common practice to use other meteorological annual series representing 
adverse conditions (e.g., P90; see Section 9.3.2) to test the project’s revenue and financial stress 
under quasi-worst-case scenario conditions. The following sections provide a review of the 
current methodologies and possible improvements for the generation of these data sets. Section 
9.3.3 provides a view of post-processing and site adaptation methodologies for reducing 
uncertainty in the data sets used for generating the series for simulation. 

9.3.1 Utilization of Typical Meteorological Data for Solar Energy System 
Simulations 

Typical meteorological data sets are used as the standard input to a wide range of solar energy 
system simulation software to obtain estimates of the average annual solar energy system yield 
during the project lifetime. Such data sets consist of annual time series of hourly or subhourly 
values of solar radiation and other meteorological variables specifically constructed to be 
representative of the long-term time-series (usually 10–30 years) typical values. 

TMY data sets are still widely used by building designers and solar energy engineers for basic 
modeling of renewable energy conversion systems and their preliminary design. These data have 
natural diurnal and seasonal variations and represent a year of typical climatic conditions for a 
location and can be useful for such basic tasks. TMYs do not, however, provide all solar 
resource data needed for solar energy, as discussed in more detail in Section 6.3. For example, 
TMYs do not contain information on interannual variability or meteorological extremes; 
therefore, TMYs should not be used to predict weather or solar resources for a particular time, 
for preparing the project’s final design, or for evaluating real-time energy production. Because a 
TMY represents “typical” conditions over a long period, such as 30 years, it is not suited to 
analyze the system’s response to worst-case weather conditions that could occur in the future. 

9.3.2 Interannual Variability and Probabilities of Exceedance 
In the case of large solar energy projects, bankability requirements are stringent; hence, reliable 
profitability and annual payback assessments need to be performed, and thus probabilistic 
information about the energy output is needed. This must be based on probabilistic solar resource 
time series that correctly account for extreme situations, which obviously require the statistical 
examination of long-term time series. 

A preliminary step is to first determine the minimum duration of the radiation data set that is 
needed to capture the true long-term mean. The interannual variabilities, as discussed in Section 
9.2.5.1, and trends in the resource must be considered. A consequence of the high interannual 
variability of DNI is that CST projects necessarily require scrutiny about the risk of bias in the 
DNI resource, which can be addressed by using long-term satellite data sets and site adaptation 
techniques. In general, PV projects are less at risk of bias in the GTI resource. Exceptions can 
occur over regions where the uncertainty in satellite-derived irradiance data is significant and/or 
in the case of PV installations using tracking systems, which attempt to maximize the DNI 
fraction of GTI. 
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Because long-term on-site measurements are the exception more than the rule, these results 
underline the importance of relying on an independent long-term data set, which, in practice, 
means a modeled data set derived from satellite images or reanalysis of NWP results. This is 
necessary to reduce the uncertainty in the long-term average DNI estimates for a proposed CST 
site, most particularly, and to provide reasonable due diligence of a plant’s estimated 
performance throughout the life of the project. This and additional concepts related to the 
development of specialized TMYs or annual series for energy simulation are described by 
Vignola et al. (2012). 

A common way to address the risks associated with the uncertainty of the long-term estimates of 
the mean annual GHI or DNI values is to consider the annual probability of exceedance (POE). 
POE, which is also denoted by “P,” is the complementary value of a percentile value. In the case 
of P50, its value matches the 50th percentile and is the result of achieving an annual energy 
production based on the long-term median resource value. For this value, the probability of 
reaching a higher energy value is 50%. For example, TMYs are meant to represent the P50 
value. In contrast, for P90, the risk that an annual energy value is not reached is 10% (90% of all 
values in a distribution exceed the P90 value). P90 corresponds to the 10th percentile. 
Depending on a project’s size and the practices of the financial institution involved, the solar 
resource’s “bad years” can be examined using various Ps—from relatively lax (P75), to stringent 
(P90 or P95), to very stringent (P99).  

Although irradiance is the largest source of uncertainty in P estimates, the estimates must also 
include other sources of uncertainty, including modeling uncertainty, uncertainty in the system 
parameters, and reliability uncertainty. High uncertainty is always an issue, even if the P results 
appear favorable. The combination of probabilistic performance modeling and the uncertainty 
inherent in various components of the system (including the solar resource) requires specialized 
developments (Ho, Khalsa, and Kolb 2011; Ho and Kolb 2010). 

Figure 9-13, taken from a study by Moody’s Investors Services (2010) and reproduced in Renné 
(2016), demonstrates conceptually how improving our knowledge of the true long-term solar 
resource at a site serves to reduce financial risk. By assuming that a long-term annual data set 
follows a Gaussian or normal distribution (which is not necessarily the case), Figure 9-13 shows 
that the standard deviation of the true long-term mean based on only 1 year of data is expected to 
be much higher than that with 10 years of data because a 10-year data set contains much more 
actual information regarding the interannual variability at the site. Assuming that the median 
value (P50) of the distributions is the same for both the 1-year and the 10-year distribution 
curves, the P90 value increases with the additional knowledge (higher confidence) associated 
with having a 10-year data set. A 10-year P90 value reduces the financial risk of the project (or, 
in other words, is more bankable) because the yield estimates will be higher when more data are 
available. In addition to the uncertainty due to interannual variability, the uncertainty in the 
irradiance estimates (from modeling or measurement) must also be considered and corrected, if 
necessary, to evaluate the uncertainty in P. 
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Figure 9-13. The uncertainty of the value of the true long-term mean is much higher with only 1 
year of data (green curve) than with 10 years of data (blue curve). Image from Moody’s Investors 

Services (2010) as presented in Renné (2016) 

The statistical calculations of P values often assume that long-term irradiance data follow a 
normal (or Gaussian) distribution. As mentioned earlier, however, this assumption might not be 
correct. For example, Dobos, Gilman, and Kasberg (2012) considered long-term measured and 
modeled updated NSRDB GHI and DNI data for Phoenix, Arizona (Wilcox 2007), and produced 
cumulative distribution functions (CDFs) based on 30 separate annual data sets to illustrate the 
concept of P50 and P90. Figure 9-14 shows that if the annual Phoenix data were fit to a normal 
distribution (solid line) at CDF = 0.1 (which corresponds to the P90 value), an annual GHI of 
1.96 MWh/m2 would be exceeded 90% of the years (or, conversely, the solar resource would fall 
below this value 10% of the years). Similarly, for DNI, the annual solar resource exceeds 
2.2 MWh/m2 for 90% of the years. For Phoenix, however, the long-term solar data do not appear 
to follow a normal distribution, but other types of distribution (such as Weibull) have not been 
assessed for the study. Figure 9-14 shows that the P90 value is somewhat less in Phoenix when 
determined from an empirical instead of a normal distribution. Further discussion on these points 
can be found in Section 9.2.6 and in Renné (2016; 2017). 

As discussed by Pavón et al. (2016) and Ramírez et al. (2017), there are several issues related to 
a P estimate. The first is the assumption that, for instance, an irradiance at the P90 level is 
proportional to the P90 of the solar system energy output, or yield, which constitutes only an 
approximation. Additional elements are thus needed (1) to identify the most appropriate P value 
and (2) to construct a specific time series for that P using hourly or subhourly data during a year 
whose sum is that specified P value. A statistically based estimation of the P value depends on 
the assumed probability distribution. This probability distribution can be approximated with the 
normal distribution in the case of annual GHI. For DNI, however, there is no evidence that a 
normal, a log-normal, or a Weibull distribution would always be the best choice. When 10 (or 
preferably more than 20) whole years of local measurements or modeled estimates are available, 
methodologies based on the cumulative distribution function should be used, such as those 
proposed by Peruchena et al. (2016). In addition, new techniques are developed to construct 
meteorological years for bankability scenarios that correspond to P90—for example, Cebecauer 
and Šúri (2015), Lara-Fanego et al. (2016), and Fernández-Peruchena et al. (2018). 
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Figure 9-14. Annual (left) GHI and (right) DNI data fitted to a normal distribution (solid line) for 
Phoenix, Arizona. Note that each gray circle covers a marker (+). 

An additional issue is the resolution of the data time series used for energy simulations. For CST 
projects, for instance, the yield and probabilistic predictions obtained with hourly data could 
differ substantially from those using 1-minute or 5-minute data (Hirsch et al. 2010; Meybodi et 
al. 2017). Satellite-derived irradiance time series are typically not available at a temporal 
resolution better than 15 minutes. Some stochastic methods have been proposed to derive 1-
minute or 5-minute irradiance from data at a coarser resolution (Buster et al. 2021; Grantham et 
al. 2017; Hofmann et al. 2014), which can be helpful. 

Instead of using a limited number of yearly data sets for simulation, Nielsen et al. (2017) 
proposed using Monte Carlo methodologies to generate an unlimited number of yearly series. 
This methodology allows the solar resource assessment—and thus the energy output 
calculation—to be performed in a way that is similar to that currently used for estimating other 
essential variables in the economic assessment of solar power plants. The generation of hundreds 
of such plausible years has been demonstrated by Larrañeta et al. (2019), Fernández-Peruchena 
et al. (2015), and Meybodi et al. (2017). Other authors—e.g., Ho, Khalsa, Kolb (2011) and Ho 
and Kolb (2010)—have found issues with the Monte Carlo approach and suggested the Latin 
hypercube sampling method instead. 

Note that including long-term trends derived from the effect of climate change and other local or 
regional singularities (such as the increase of atmospheric aerosols derived from pollution) on 
solar radiation could improve the value of the solar power plant yield prediction (i.e., during the 
complete solar facility lifetime). For instance, the Meteonorm62 software includes the effect of 
climate change estimated from the International Panel of Climate Change models for three 
different scenarios. Aerosol pollution scenarios are also important for the future GHI and DNI 
resource. For instance, a decrease in the solar resource has occurred in many Asian countries 
during the recent past, and this trend could continue into the foreseeable future. 

 
62 See http://www.meteonorm.com/. 

http://www.meteonorm.com/


Chapter 9-24 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

9.3.3 Combining Data Sets: Site Adaptation to Improve Data Quality and 
Completeness 

Long-term solar resource data sets always have uncertainty. If its magnitude can be precisely 
evaluated, investors can derive the risk of the project and evaluate whether the performance of 
the system could be lower than desired. Reducing uncertainty in solar resource data is thus a key 
step toward bankable projects. Combining modeled data sets with site observations are called 
post-processing techniques (Janotte et al. 2017). These cover a wide variety of methodologies 
that are applied to improve direct model or retrieval outputs and reduce uncertainty. A detailed 
description of these methods is given in Chapter 4, Section 4.8. 

9.4 Solar Radiation Data Requirements for Yield Estimation 
This section provides a summary of general approaches to using solar resource data (as 
described in chapters 1–5) to estimate the yield of solar energy systems. The used resource data 
include not only solar radiation but also other meteorological parameters (such as wind speed 
and temperature) that were discussed in Chapter 5. First, PV systems are discussed, followed by 
CST systems. 

9.4.1 Yield Estimation of Nonconcentrating Photovoltaic Projects 
The value of electricity generated by a PV plant depends on the amount of electricity generated 
and on the grid’s need for that electricity at the time it is generated (i.e., its load curve). A 
quantitative understanding of the specific solar resource for the intended location and orientation 
of the PV array is essential to evaluate the first quantity. The relevant solar input for yield 
calculation is the irradiance incident on the plane of array (POA) (i.e., GTI), although other 
parameters (particularly ambient temperature, wind, and soiling) also impact the system’s 
output. This section provides a high-level overview; more detailed descriptions of PV system 
modeling can be found in Ellis, Behnke, and Barker (2011). Three general approaches exist to 
estimating a PV system’s yield. These are presented in order of increasing accuracy. 

9.4.1.1 Performance Ratio Method 
The output of a PV plant can be characterized by the performance ratio (PR) metric, which is the 
ratio of the electricity generated by the plant relative to its theoretical output during the same 
period. 

When using this method, the first step is to determine the theoretical annual output of the system. 
The nameplate rating for PV systems refers to the system power output evaluated under standard 
test conditions (GTI of 1000 W/m2 at 25°C), and it is primarily a function of the efficiency, η, 
and area, A, of the PV module to convert incoming solar radiation to DC power output. The rated 
power, P0, of the system is given by: 

 P0 [kWp] = A [m²] · 1000 [W/m2] · η. (9-4) 

The reference yield, YR, of the module is then determined from the actual annual GTI [kWh/m2-
yr] at the site: 

 YR [kWh] = P0 [kW] · GTI [kWh/m2-yr] / 1000 [W/m2]. (9-5) 
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The performance ratio is then applied to Eq. (9-5) to determine the actual energy produced by 
the solar system, also called the final yield, YF, which is typically less than its theoretical energy 
because of a variety of factors, as described in the following: 

 YF [kWh] = PR · YR [kWh] (9-6) 

where the PV plant size is derived from the sum of each module’s nameplate rating. The specific 
yield, yF [kWh/kWp] = YF / P0, is the normalized final yield of the system. In practice, deviations 
from this estimate can be expected because of the interannual variability of the solar resource 
and the variability of the performance ratio (van Sark et al. 2012). 

Typically, for most recent solar power plants, PR ranges from 0.8–0.9. Factors contributing to 
lower performance ratios include: 

• Shading losses 
• Soiling or snow-coverage losses 
• Nonideal system orientation 
• Wiring losses 
• Lower module efficiencies under high-temperature operations 
• Undersized inverters, making them “clip” the plant’s output part of the time 
• Older plants that have experienced module degradation  
• Modules whose performance is less than expected because of incorrect nameplate 

information. (Many manufacturers now bin modules so that the actual performance is 
equal to or greater than the nameplate value. In past years, however, manufacturers often 
placed modules in the bin with the larger nameplate value.) Only measurements of the 
PV module power corrected to standard test conditions can provide correct values of the 
performance ratio. 

Some factors that contribute to high observed performance ratios include: 

• Operation in a cold climate 
• Modules with low temperature coefficients. (Typically, CdTe, CIGS, and high-efficiency 

silicon modules tend to have the lowest temperature coefficients.) In the case of PV 
modules with low temperature coefficients, the power output degrades less when 
temperature rises; hence, the modules will produce a higher energy yield. Such modules 
are the preferred option at high-temperature locations. 

• Modules that generate power above the nameplate rating (based on 1000 W/m²) as a 
result of high atmospheric transparency, cloud enhancement, and/or high ground 
reflection. 

• Soiling or miscalibration of the radiation sensor, making it underestimate the incident 
irradiance and overestimate the performance ratio; therefore, regular cleaning and 
maintenance of the sensor is very important. 

Other impacts on the performance ratio are the choice of the irradiation sensor (pyranometer 
versus reference cell) and the methodology of how the PV system power is determined 
(nameplate power, manufacturer flasher measurement, and/or on-site measurements). 
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The performance ratio method is simple, but it might not be accurate in all cases. For instance, 
van Sark et al. (2012) found a few older PV systems with performance ratios surprisingly less 
than 50%. The method is particularly useful, however, to compare the performance of existing 
systems or to quickly use solar resource data that might not be available to the alternate 
performance models, which are presented in the next sections. Otherwise, using a more 
sophisticated performance model is most likely the better approach.  

9.4.1.2 Simple Photovoltaic Performance Models 
Among other simple models, NREL’s PVWatts® or the European Commission’s Joint Research 
Centre Photovoltaic Geographical Information System (PVGIS) are free online tools that 
provide estimates of the electric energy production of roof- or ground-mounted PV systems 
based on a few simple inputs.63, 64 The user needs to enter a street address or the geographic 
coordinates of the system’s location and specify the main characteristics, such as installed power 
(kWp), array inclination and orientation, or the module technology type. Both tools also allow 
modeling of tracking PV systems, and PVGIS also provides estimates for off-grid systems. As 
output, both tools provide hourly and yearly estimates of energy incident on the PV installation 
and of the corresponding electricity production. The monetary value of the produced electricity 
can also be calculated, for which the user needs to provide information about the system’s cost 
and the grid electricity consumer price.  

By default, for locations in the United States, PVWatts uses a TMY created from the NREL 
NSRDB Physical Solar Model Version 3 data set (e.g., labeled “tmy-2018,” where the year 
corresponds to the latest year in the data set); TMY2, which was created from NSRDB 
Meteorological Statistical Model (MTS) 1 (1961–1990); or TMY3, which was created from 
NSRDB MTS 2 (1991–2005 data). Other solar resource data options are available for world 
locations, but in most cases some spatial extrapolation is implied. Advanced users can change 
the default assumptions for losses caused by shading, soiling, and other factors. Full details 
about the underlying PVWatts algorithms can be found in Dobos (2014). 

PVGIS provides hourly values of solar resource data and PV performance estimates for different 
technologies and system configurations based on averages of hourly calculations for time 
periods of more than 10 years. The effects of the irradiance spectral content, angle-of-incidence 
reflectance, and PV efficiency at low-irradiance or high-temperature conditions are considered, 
as are other general losses.65 PVGIS uses automatically derived horizon profiles by default, 
which can be adapted by the user to the case of interest. PVGIS was originally developed for 
Europe, but it has been extended to Africa, and at present it offers data for most of Asia and 
America as well, thanks to the Joint Research Centre’s collaboration with EUMETSTAT’s 
Satellite Application Facility on Climate Monitoring and NREL. PVGIS also offers TMY data 
following the International Organization for Standardization 15927-4 methodology. 

 
63 See http://pvwatts.nrel.gov.  
64 See https://ec.europa.eu/jrc/en/pvgis. 
65 See https://ec.europa.eu/jrc/en/PVGIS/docs/methods. 

http://pvwatts.nrel.gov/
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/PVGIS/docs/methods
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These simple tools provide a very convenient and more accurate analysis method than the 
performance ratio described in the previous section, so they are recommended when a quick 
estimate is needed. 

9.4.1.3 Detailed Photovoltaic System Performance Models 
More accurate estimates of PV system performance can be obtained by setting up a detailed 
model of the PV plant that includes choosing specific modules and inverters, an array layout, 
detailed losses, and shading analysis. An increasing number of public and commercial tools are 
available to perform these detailed analyses. These elaborate models allow the user to have more 
control over the many submodels necessary to go from irradiance to power output. These tools 
usually include options for: 

• Specifying irradiance and meteorological data sources 
• Transposing the irradiance data from horizontal to the POA 
• Modeling the impact of shading from both external objects and interrow (self-) shading 
• Modeling or specifying loss percentages for soiling and snow cover 
• Modeling the impact of the irradiance’s spectral distribution on PV technologies 
• Modeling reflections from the cover of the PV module 
• Modeling the temperature of the PV module 
• Modeling the power output from the PV module based on the effective irradiance 

reaching the PV cells and the module temperature 
• Modeling or specifying losses resulting from a mismatch between modules and DC 

wiring 
• Modeling the inverter’s conversion of power from DC to AC 
• Modeling or specifying AC wiring losses and transformer losses 
• Specifying losses for planned or unplanned system maintenance and outages. 

Examples of freely available programs that include such detailed PV performance models are 
NREL’s SAM,66 First Solar’s PlantPredict,67 RETScreen,68 and Greenius.69 Some popular 
commercially available options include PVsyst,70 PV*SOL,71 Aurora Solar,72 HelioScope,73 and 
archelios Pro.74 Some programs are desktop tools, whereas others are web tools performing 
cloud-based applications. For software programmers, SAM, PlantPredict, and PVWatts include 
options for accessing calculations from various programming languages via an application 
programming interface, and SAM’s code is open source, allowing interested parties to examine 
the underlying algorithms in great detail. 

As described in Chapter 5, all detailed PV modeling tools require not only irradiance but also 
meteorological parameters (most importantly ambient temperature and wind speed) to evaluate 

 
66 See https://sam.nrel.gov/.  
67 See https://plantpredict.com/. 
68 See https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465.  
69 See https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/.   
70 See https://www.pvsyst.com/. 
71 See https://valentin-software.com/en/products/pvsol-premium/. 
72 See https://www.aurorasolar.com/. 
73 See https://www.helioscope.com/. 
74 See https://www.trace-software.com/archelios-pro/solar-pv-design-software/.  

https://sam.nrel.gov/
https://plantpredict.com/
https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465
https://www.dlr.de/sf/en/desktopdefault.aspx/tabid-11688/20442_read-44865/
https://www.pvsyst.com/
https://valentin-software.com/en/products/pvsol-premium/
https://www.aurorasolar.com/
https://www.helioscope.com/
https://www.trace-software.com/archelios-pro/solar-pv-design-software/
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the power output. Because irradiance uncertainty is one of the biggest sources of uncertainty in 
the final modeled power output, care should be taken to minimize uncertainty in the irradiance 
resource data selected for PV modeling. Additional considerations for choosing the most 
appropriate input irradiance data can depend on the PV technology. For example, thin-film PV 
modules respond to a different (and smaller) part of the irradiance spectrum than crystalline 
modules (see Figure 3-22), making spectral corrections important for accurately modeling thin-
film technologies.  

Evolving module technologies make it hard for modeling software to keep up with technological 
advancements. For example, when modeling thin-film CdTe modules, optimal results might not 
be obtained from conventional modeling software packages. PlantPredict has specifically 
focused on properly modeling thin-film CdTe modules, but it is not limited to the CdTe 
technology; it can also be used to model mono-passivated emitter and rear cell, bifacial, and 
other thin-film module technologies. 

The accuracy of predictions from these detailed PV modeling tools is very important to system 
feasibility and financing. Freeman et al. (2014) compared predicted outputs from multiple PV 
modeling tools to measured outputs for nine different systems. In parallel, Axaopoulos, 
Fylladitakis, and Gkarakis (2014) performed the same kind of comparison—but using a different 
set of modeling tools and measured data—for only one PV system. 

9.4.2 Yield Estimation of Concentrating Solar Technology Projects 
Yield estimation models for CST plants cover the calculation of the concentrating optics 
performance; the conversion of concentrated light to electricity, process heat, or chemical 
energy; and the management of the storage systems, if included. 

In general, DNI is by far the most critical solar input for yield calculation in concentrating 
technologies. Other meteorological variables are also usually required: dry air temperature, 
relative humidity (or, alternatively, wet-bulb temperature), and wind speed. Wind direction, 
precipitation, and snow height are also recommended to better characterize local conditions 
(Hirsch et al. 2017). 

Following are brief descriptions of the available types of optical performance models oriented to 
yield calculation. Some models are integrated with others for conversion into electricity, 
including storage, or with additional specialized modules for cost calculations (e.g., SAM, 
Greenius). Optical performance models can be separated into different categories: ray-tracing 
tools, analytical optical performance models, and models that determine the optical performance 
with lookup tables. 

9.4.2.1 Monte Carlo Ray-Tracing Tools 
The incident solar irradiance can be described as a multitude of solar rays transmitted from the 
sun to the concentrators and finally to the receiver. Although ray-tracing tools can provide 
highly accurate results, they are also highly demanding in terms of computing resources; thus, 
their use is usually limited to detailed design calculations (for example, calculation of the flux 
distribution on the receiver surfaces in central receiver systems) or to the elaboration of lookup 
tables or incidence angle modifiers for line-concentrating technologies. 
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Ray-tracing tools—such as STRAL (Belhomme et al. 2009), SolTRACE (Wendelin 2003), 
MIRVAL (Leary and Hankins 1979), SPRAY (Buck 2010), Tonatiuh (Blanco et al. 2009), and 
Heliosim (Potter et al. 2018)— calculate the path of the sun’s rays from the sun’s disk and the 
circumsolar region to the target by application of physical laws. Monte Carlo techniques are 
often implemented to allow for reasonable calculation times. 

For illustration, one method of ray tracing that is available in SPRAY is explained here. The 
method selects one concentrator element after another and traces a given number of rays from 
the current element. After calculating the vector to the center of the sun, the appropriate 
sunshape is included. (For details, see Chapter 2, Section 2.7.1, and Chapter 5, Section 5.9, 
respectively.) The specific ray under scrutiny is then related to a power calculated as the product 
of the incident DNI and the projected area of the current concentrator element divided by the 
number of rays per element. Then the path of the ray is followed until it reaches the receiver. 
This ray-tracing method can be based on actual measurements of the concentrator geometry or 
on its design geometry affected by typical optical errors. 

9.4.2.2 Analytical Optical Performance Models 
Analytical optical performance models are generally based on cone optics convolution methods. 
One example of a calculation method that uses an analytical approach is the Bendt-Rabl model 
(Bendt et al. 1979; Bendt and Rabl 1981). To accelerate calculations, analytical equations are 
derived and solved to describe the ray’s path throughout the optical system. For example, the 
model can be used for parabolic troughs and solar dishes. In a first step, an angular acceptance 
function is determined from the design geometry. The angular acceptance function is defined by 
the fraction of rays incident on the aperture at a specific angle that ultimately reach the receiver. 
The second step consists of determining an effective source that includes both the user-defined 
sunshape and any possible deviation from the design geometry. The optical errors of 
concentrators are described as Gaussian-distributed independent uncertainties. Their combination 
is also a Gaussian distribution with a standard deviation, which is often called an optical error. 
The function that describes the optical errors is then combined with the sunshape using 
convolution. For line-focusing systems, such as parabolic troughs, a further integration step is 
required because the effect of circumsolar radiation on the incident irradiance depends strongly 
on angle. Finally, the intercepted radiation can be determined by summing the product of the 
effective source and the acceptance function over all angles. Similar analytical methods are used 
in HELIOS (Vittitoe and Biggs 1981), DELSOL (Kistler 1986), HFLCAL (Schwarzbözl et al. 
2009), and SolarPILOT (Wagner and Wendelin 2018). 

9.4.2.3 Lookup Table-Based Optical Performance Models 
The fastest way to determine the optical performance of a CST collector uses only 
parameterizations or lookup tables that describe the change in the optical performance with solar 
position. The necessary parameters can be derived from experimental data, analytical 
performance models, or ray-tracing tools. Such lookup tables or parameterizations are used in 
some SAM submodels (Blair et al. 2014) and in Greenius (Dersch, Schwarzbözl, and Richert 
2011; Quaschning et al. 2001).  
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9.5 Solar Resource Data for Plant Operations 
This section discusses a variety of approaches for monitoring the solar resource at an existing 
solar power plant to better understand its performance. The performance of a solar energy 
system is directly linked to the meteorological conditions. For flat-plate thermal collectors and 
PV, the production is roughly proportional to the incident GTI; for concentrating technologies, 
the incident DNI is the driving input. In all cases, additional meteorological variables need to be 
monitored because they play a modulating role. In summary, the real-time monitoring of 
meteorological conditions at the system’s location is important to:  

• Evaluate a performance guarantee (acceptance testing) 
• Assess the power plant’s performance to improve yield predictions and to gain 

knowledge toward improvements in future plants  
• Identify conditions of poor performance, including evidence of soiling, shading, 

hardware malfunction, or degradation, which could lead to warranty replacement, etc. 

9.5.1 Performance Guarantee 
Different methods exist to evaluate a plant’s performance guarantee. In all cases, data recorded 
from on-site measurements of the solar resource are necessary. In the case of concentrating 
technologies, data sets derived from good-quality, on-site DNI measurements are usually 
required as inputs to the models used for performance guarantee. For flat-plate thermal collectors 
and PV, the yield prediction is generally based on GHI (even though the actual resource 
corresponds to GTI); hence, it is also common for a performance guarantee to use GHI as the 
basis for determining whether a plant has performed as promised. Some companies, however, 
have noted that the performance characterization of a PV plant can be accomplished with a 
lower uncertainty by using GTI instead. (That is because this approach reduces the uncertainty 
inherent to the approximate transposition procedure that transforms GHI into GTI.) Moreover, 
specific irradiance sensors (such as reference cells or reference modules that closely match the 
PV module response) can be chosen to match the expected response of the PV modules (thus 
reducing angle-of-incidence and spectral effects). Specifying GHI remains the best option if, for 
instance, a PV system comprises different sections with POAs of different tilts or azimuths, 
which might be the case over complex terrain. If the performance guarantee is specified in terms 
of GTI, the plant efficiency characterized during the performance guarantee evaluation could 
differ from the efficiency estimated in an earlier step with a model rather than using historical 
GHI data. Also, the placement of all sensors must (1) be in the correct plane (which is easy to 
confirm when the sensor is in the horizontal plane but not as easy for other orientations) and (2) 
experience the expected local conditions (ground albedo and shading) if the sensor is not in the 
horizontal plane (Kurtz et al. 2014). 

Additional meteorological variables must be measured (see also Chapter 5), as discussed for 
yield predictions. Depending on the size of the solar system, more than one measurement point 
must be considered if the evaluation takes place during partly cloudy conditions. Acceptance 
tests for CST systems are discussed in Janotte, Lüpfert, and Pitz-Paal (2012) and Kearney (2009, 
2014). 
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9.5.2 Power Plant Performance Monitoring 
During power plant operation, knowledge of the current meteorological conditions and of the 
real-time status of the plant are of high importance. In addition, the future meteorological 
conditions are useful; therefore, both solar resource measurements and forecasts are essential 
parts of many large solar systems. Real-time DNI, wind, and temperature data are essential for 
the operation of CST plants, and thus they need to be continuously monitored. Although many 
PV plants can operate successfully with only episodic intervention, measurements and forecasts 
can also be advantageous. Cleaning a PV array as a function of meteorological conditions (e.g., 
frequency of recent precipitation) has benefits. Moreover, equipment malfunctions can be 
detected more quickly if the PV plant output is being continually compared to the expected 
output based on actual meteorological conditions. There is wide agreement that a well-
maintained reference cell in the POA is the best choice when the goal is to identify the need for 
power plant maintenance. For a thorough PV power plant performance assessment, a calibrated, 
well-maintained, and regularly cleaned POA pyranometer is required. More details about solar 
radiation measurement and maintenance of instrumentation are provided in Chapter 3. 

9.5.3 Solar Radiation Forecasting Needs for Solar Power Project Operations and 
Maintenance 

Forecasting the production of a solar power plant can considerably improve its profitability 
(Ramírez and Vindel 2017). Accurate predictions of the plant’s average solar resource are 
needed for both solar thermal and PV power plants. The most important parameter to forecast is 
GHI in the case of flat PV plants and DNI in the case of concentrating systems.  

Detailed explanations on solar radiation forecasting methodologies and the current state of the 
art are provided in Chapter 8. The specific forecasting needs depend on the intended application. 
Essentially, solar radiation forecasts can be used for either planning maintenance downtime or 
for optimizing operations. 

9.5.3.1 Planning Maintenance  
Maintenance work is needed in all types of solar power plants. Examples include technical 
closure, replacing defective components, cleaning modules or mirrors, or even conducting 
characterization tests. Depending on the expected duration of the maintenance work, the required 
forecasts correspond to different time horizons. Usually, a technical plant closure must be 
planned ahead of time and occurs on a fixed date based on the long-term forecasting on a 
monthly basis, whereas minor maintenance work is decided based on day-ahead forecasts. 

9.5.3.2 Optimizing Operation and Revenue  
To optimize operation, forecasting knowledge will help improve electricity sales by better 
matching production with demand if the plant is equipped with storage, particularly in the case 
of CST projects. In that case, the plant’s annual revenue is conditioned by the quality of the solar 
forecasts (Ferretti et al. 2016); thus, especially when subject to a fluctuating electricity market, 
the plant’s revenue can be maximized if production can be predicted appropriately. If there are 
ramp rate limitations defined by the grid operator, the yield of a PV plant with batteries can be 
improved by storing excess PV energy during positive ramps and using energy from the batteries 
during negative ramps. Forecasts can help manage the battery storage for this application and 
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help limit the required storage capacity. Figure 9-15 shows the role of meteorological variables 
in demand and energy generation.  

  
Figure 9-15. Importance of weather variables in forecasted demand and energy production. Image 

from Ramirez and Vindel (2017) 

9.6 Variability of Solar Energy Production 
From an application perspective, the solar resource variability (see Section 9.2.6) translates into 
power production variability, which could impact the stability of electric grids or the economics 
of the facility. One important question that has received specific attention is: How much is the 
temporal variability at one solar power plant site correlated with that of another site some 
distance away? A high correlation would tend to destabilize the grid and thus needs to be 
addressed in detail. 

9.6.1 Photovoltaic Applications 
Based on extensive studies (Hoff and Perez 2012a), it appears that the output’s variability of a 
fleet of N PV plants over a given region will be reduced by the inverse of the square root of N if 
the plants’ output variability is uncorrelated and if the plants experience similar natural 
variability. This is a consequence of the spatial smoothing effect noted by many (e.g., Marcos et 
al. 2012; Murata, Yamaguchi, and Otani 2009; Woyte et al. 2007; Wiemken et al. 2001). This 
result means that nearby locations are highly correlated, experiencing the same ramp rates at 
nearly the same time and varying in sync. In contrast, the time series from distant locations are 
uncorrelated. Partial correlation exists between these two extremes. Hoff and Perez (2012b) used 
10-km, hourly, satellite-derived irradiances over the continental United States. They observed a 
similar asymptotic decay with distance and a predictable dependence of this decay upon ∆t for 
time intervals of 1, 2, and 3 hours. They also noted that the rate of decrease of correlation with 
distance was different for various U.S. regions and attributed these differences to prevailing 
regional cloud speeds, as confirmed by Hoff and Norris (2010). Perez, Hoff, and Kivalov (2011) 
analyzed high-resolution, high-frequency, satellite-derived irradiances (1 km, 1 minute) in 
climatically distinct regions of North America and Hawaii to investigate the site-pair correlation 
decay as a function of distance, timescale, and mean monthly regional cloud speed (see Figure 9-
16), itself independently derived from satellite cloud-motion vectors. Interestingly, as shown in 
Figure 9-16 for various areas and periods, the rate of decrease of this correlation with distance is 
a strong function of the data’s temporal resolution. A distance of approximately 5 km might be 
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sufficient to smooth out fluctuations on a 1-minute timescale, whereas distances greater than 50 
km would be needed to smooth out hourly fluctuations. See also Remund et al. (2015) for 
examples pertaining to other regions in the world.  

 
Figure 9-16. Site-pair correlations as a function of time and distance for sample regions in North 

America and Hawaii. Mean monthly cloud speed was estimated from satellite-derived cloud 
motion vectors computed for each data point. Image from Perez, Hoff, and Kivalov (2011) 

9.6.2 Quantifying Photovoltaic Output Variability 
The variability quantifying metric should adapt to a wide range of temporal and spatial scales 
and embed (1) the physical quantity that varies, (2) the variability timescale, and (3) the time 
span during which variability is assessed.  

9.6.2.1 Physical Quantity 
For energy producers and grid operators, the pertinent quantity is the power output, p, of a power 
plant or of a fleet of power plants at a given point in time. The power output variability reflects 
the underlying variability of irradiance impinging on the plant(s); therefore, understanding and 
quantifying the variability of irradiance amounts to quantifying and understanding the variability 
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of p. DNI’s variability is relevant for concentrating technologies, whereas the variability in GHI 
or GTI is representative of flat-plate technologies. This section focuses on the latter. 

The solar geometry-induced variability is fully predictable. Here, the focus is on cloud/weather-
induced variability that is stochastic in nature. To better understand this variability component, it 
is useful to first remove the solar geometry effects. The clearness index, Kt (ratio between GHI 
and its extraterrestrial counterpart), or the clear-sky index, Kc (ratio between GHI and its clear-
sky counterpart), both embed the stochastic variability of irradiance but are largely independent 
of solar geometry. The use of Kc is preferable in general because it more effectively removes 
solar geometry effects at low solar elevations (Perez et al. 1990). Nevertheless, its use implies 
that the clear-sky irradiance can be accurately estimated, which represents an additional step that 
many analysts try to avoid. 

9.6.2.2 Timescale 
The intuitive temporal example presented suggests that the temporal scale of the selected 
physical quantity’s time series, ∆t, is a fundamental factor. Depending on the application, ∆t can 
range from 1 second or less to hours and more. A variation in Kc corresponding to the selected 
timescale ∆t is noted ∆𝐾𝐾𝐾𝐾∆𝒕𝒕. On short scales (milliseconds to minutes), this change is often 
referred to as the ramp rate. 

9.6.2.3 Time Span 
A proper measure of variability should include ramp events covering a statistically significant 
time span. This time span should be a large multiple of ∆t. 

9.6.2.4 Nominal Variability Metric 
Nominal variability refers to the variability of the selected dimensionless clear-sky index. The 
maximum or mean ∆𝐾𝐾𝐾𝐾∆𝒕𝒕 ramp rate over a given time span has been proposed as such a measure 
(Hoff and Perez 2010); however, most authors have recently settled on the ramp rate’s variance, 
or its square root—the ramp rate’s standard deviation—over a given time span as the preferred 
metric for variability. 

 Nominal variability = 𝜎𝜎(∆𝐾𝐾𝐾𝐾∆𝒕𝒕) = �𝑉𝑉𝑉𝑉𝑉𝑉[∆𝐾𝐾𝐾𝐾∆𝒕𝒕] (9-7) 

9.6.2.5 Power Output (Absolute) Variability Metric 
Eq. 9-7 describes a nominal dimensionless metric. When dealing with power generation, it is 
necessary to scale up the nominal metric and to quantify the power variability in absolute terms. 
This is expressed by Eq. 9-8: 

Power variability =  𝜎𝜎(∆𝒑𝒑∆𝒕𝒕) = �𝑉𝑉𝑉𝑉𝑉𝑉[∆𝒑𝒑∆𝒕𝒕] (9-8) 

Recall that p can be modeled from Kc via extraction of GHI, extrapolation to POA irradiance 
(GTI), and inclusion of PV specifications (i.e., without changing the inherent cause of 
variability); hence, Eq. 9-8 does not include additional intrinsic variability information relative 
to Eq. 9-7. 
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9.7 Applying Solar Resource Data to Other Types of Solar Energy 
Projects 

9.7.1 Projects Using Flat-Plate Thermal Collectors  
Energy simulation tools for flat-plate thermal collector systems usually include a suite of 
modules describing the thermal receiver and the thermal losses of the piping, parasitic losses, 
and thermal storage. Some typical tools for these simulations are Polysun75 and T*Sol76; 
however, some of the aforementioned general software tools also include these types of systems. 
For example, this is the case with RETScreen, SAM, and Greenius. Although the irradiance in 
the flat-plate collector plane (GTI) is the physically relevant irradiance, the separate 
specification of DNI and DHI can be of interest. Individual incidence angle modifiers can be 
used to determine the efficiency of the DNI and DHI energy conversion, respectively, for a 
given solar position. 

9.7.2 Solar Heating and Cooling in Buildings 
Solar heating and cooling in buildings (SDHtake-off Project 2012), smart cities, and smart grids 
are projects that include solar systems among other energy systems or energy conservation 
measures. Solar radiation data are still needed for sizing, simulation, and evaluation. Note, in 
particular, that TMY and Test Reference Year (TRY)/ Design Reference Years (DRY) (Crawley 
1998; Hall et al. 1978; Lund 1974) were originally developed for building applications. The 
TRNSYS simulation software (University of Wisconsin) has also traditionally been applied to 
buildings. 

9.7.3 Smart Electric Grids  
Electric grids benefit from high-quality solar radiation data in both grid operation (now, today, 
and the next days) and grid planning (the next months to years). For example, solar radiation and 
forecasting data are used in grid operation for: 

• Power system state estimation  
• Unit commitment and scheduling of power plants and storage units 
• Congestion forecasting and management  
• Forward coordination between various stakeholders (e.g., transmission and distribution 

grid operators, plant operators, and other market players). 
The further the integration of solar PV into the grid proceeds, the more important it is to 
integrate information about current and upcoming electrical power production and feed-in into 
operation processes. Regulations such as the European System Operation Guideline77 define the 
need for data. Grid-connected PV power plants of a relevant size (e.g., more than 1 MWp) 
provide real-time measurement data and a regular schedule of the planned feed-in. Further, for a 
detailed congestion forecast in grid operation, one needs an additional estimate for the possibly 
large number of small grid-connected installations. Because even smart meters do not always 
provide real-time data to the grid operators, those not receiving the data need to generate or buy 
an estimation of regional feed-in, typically based on some upscaling method. To do so, radiation 

 
75 See http://www.velasolaris.com/.  
76 See http://www.valentin-software.com/. 
77 See https://www.europex.org/eu-legislation/sogl/. 

http://www.velasolaris.com/
http://www.valentin-software.com/
https://www.europex.org/eu-legislation/sogl/
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data from NWP and satellite observations are a valuable source of information. Forecasting 
providers, making use of sophisticated statistical or even machine learning models, usually 
process these inputs. For this, they rely on detailed master data about the individual plant or the 
large number of plants behind the meter. An extensive database (per grid and/or per nation) 
collecting and providing such master data should be available.78 In contrast to grid operation, 
where individual estimates and forecasts are permanently integrated into the processes, grid 
planning is based on a historical radiation data set, and simultaneity factors within a portfolio of 
installed or expected power plants are assumed. 

As an alternative to operational approaches intended to blend with standard transmission system 
operator (TSO) practice, such as those just described, another avenue is currently explored in the 
International Energy Agency’s Photovoltaic Power Systems Programme (PVPS) Task 16: entirely 
eliminating supply-side forecast uncertainty and its impact on load imbalances via operationally 
firm solar forecasts. This is achieved by adding and operating dedicated hardware and controls 
to PV plants or fleets of plants so that the output seen by the grid operator exactly amounts to the 
forecast output. The hardware consists of optimized storage and plant oversizing to make up for 
all instances of forecast over- or underestimation as well as controls to equate actuals and 
predictions in real time. In addition to being a prospectively cost-effective operational forecast 
strategy for TSOs, the real value of this strategy lies in opening the door to least-cost firm power 
generation, hence the possibility of ultrahigh solar penetration at the lowest possible cost. 

• A prospectively cost-effective operational forecast strategy for TSOs: Firm forecast 
operations have been analyzed for individual Surface Radiation Budget Network 
(SURFRAD) locations in the United States as well as for a simulated fleet in California 
comprising 16 power plants—one in each state’s climatic region (Perez et al. 2019a, 
2019b). Applying the State University of New York forecast model to the California fleet 
would result in achieving a firm forecast cost less than $150/kWp today (i.e., an 
approximate 10% premium on current large-scale turnkey PV costs) for firm day-ahead 
forecasts. Future PV and storage costs anticipated in 10–15 years should reduce the cost 
of entirely eliminating solar supply-side imbalances to less than $50 per PV kWp. Pierro 
et al. (2020) recently showed that such a firm forecast strategy could already be cost-
effective for ratepayers today in Italy, compared to the existing market for load 
imbalance corrections. 

• A least-cost ultrahigh penetration transition strategy: The same operational strategy—
optimized storage plus overbuilding—applied on a larger scale has been shown to be the 
key to achieving firm, effectively dispatchable PV production at the least possible cost. A 
series of recent publications (Perez et al. 2019c, 2019d) showed that 2040-targeted, firm, 
24/7 electricity production levelized cost of energy (LCOE) of the order or less than 5 
U.S. cents per kWh were realistic targets in the central United States, Italy, and the island 
grid of La Reunion, France. Figure 9-17 illustrates how PV overbuilding can sufficiently 
reduce storage requirements to achieve an acceptably low firm power generation LCOE. 
Pierro et al. (2021) showed that the entry-level firm forecast strategy can be gradually 
expanded over time, following technology costs and TSO practice learning curves to 

 
78 See, for example, 
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/CoreEnergyMarketDataRegister/CoreDataReg_no
de.html.  

https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/CoreEnergyMarketDataRegister/CoreDataReg_node.html
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/CoreEnergyMarketDataRegister/CoreDataReg_node.html
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transition from low-level firmness requirements—meeting forecast production—to more 
stringent requirements, until meeting demand 24/7/365 becomes economically 
achievable with only minimal reliance on conventional resources. 

 
 

Figure 9-17. Impact of PV overbuilding on firm power generation LCOE. Although unconstrained 
PV (A) is inexpensive (apparently below grid parity), firming PV to meet demand 24/365 with 

storage alone (B) is unrealistically expensive. Overbuilding PV fleets reduces storage 
requirements to the point (C) where firm PV power generation can achieve true grid parity (D). 

Image from Perez et al. (2019c) 

9.7.4 Chemical Applications  
Solar resource data are required for several chemical applications. These can be divided into two 
main topics because of their different use of the solar resource: desalination and photochemical 
applications. 

9.7.4.1 Solar Desalination 
Global demand for freshwater is continuously increasing because of population growth and 
economic development. To meet this increasing demand, desalination has become the most 
important source of freshwater for drinking and agriculture in some world regions with huge 
solar energy potential, such as the Middle East and North Africa (Isaka 2012). 

Seawater solar thermal desalination via multistage flash or multi-effect distillation uses solar 
heat as the energy input. This methodology is the most promising desalination process based on 
renewable energy. As previously discussed, the CST part of the desalination project needs 
several years of high-quality, on-site data for simulation and design optimization or site-adapted 
data time series that are similar to the required data for CST plants. 
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Many small PV-based membrane desalination systems have been installed worldwide, especially 
in remote areas and islands. As in the case of a standard PV plant, GHI and/or GTI data are 
needed as the most relevant solar input for these systems. 

9.7.4.2 Solar Photocatalysis: Detoxification and Disinfection of Fluids 
Solar photocatalytic detoxification and disinfection processes constitute a solution for the 
treatment of contaminated groundwater, industrial wastewater, air, or soil (Malato 2004). The 
development of these processes has reached a point where the solar technology can be 
competitive with conventional treatment methods, particularly at isolated locations with high 
solar potential, which can be the case with many agricultural farms. 

Solar photochemistry can be defined as the technology that collects solar photons and introduces 
them in an adequate reactor volume to promote specific chemical reactions (Blanco and Malato 
2010). The equipment that performs this function is a solar collector—specifically, a compound 
parabolic collector with a relatively large acceptance angle; hence, they can use DNI and the part 
of DHI that emanates from the circumsolar region. The requirements for solar photochemical 
reactors are similar to any other photochemical reactor, with the particularity that their light 
input comes from the sun rather than from a lamp. For this reason, and according to the working 
temperature, the collector must be tilted or mounted on a tracking system with one or two axes; 
Figure 9-18 illustrates two different photo reactors installed at Plataforma Solar de Almería 
(CIEMAT), Spain.79 Depending on the type of solar collector, tilted or direct ultraviolet solar 
irradiance data will be needed. In the most general case that ultraviolet radiation is not measured 
locally, these variables must be empirically derived from DNI and/or GHI data (e.g., Habte et al. 
2019). 

 

Figure 9-18. Compound parabolic collector photo reactors installed at Platforma Solar de Almería 
for solar water disinfection applications: (left) compund parabolic collector-SODIS and (right) 

FITOSOL-2 . Photos from Platforma Solar de Almería, CIEMAT 

 
79 See http://www.psa.es/en/instalaciones/aguas.php.  

http://www.psa.es/en/instalaciones/aguas.php
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9.8 Summary of Applications of Solar Resource Data 
This chapter summarized available information as well as guidance on the type of solar resource 
relevant to various stages of a solar project, and attempted to inform readers about their specific 
needs relative to solar radiation data and how these needs depend on the type of solar project and 
on the project’s stage.  

Figure 9-19 displays a summary of the solar radiation needs at different steps of a hypothetical 
project. The information provided here is applicable to the case of large solar energy projects, 
mainly PV and CST, and to the case of building energy performance evaluations.  

 
Figure 9-19. Data application techniques for the various stages of project development 

Maps (from, e.g., the Global Solar Atlas80 or the Global Atlas for Renewable Energy81) should 
be used to make a preliminary assessment of the solar resource, cautiously assuming a fairly 
large potential for error. GIS tools and resources are commonly used at this step for 
convenience. Various spatial resolutions need to be used when addressing projects at the 
regional or national scale—compared to the case of the neighborhood or city scale. Using these 
tools, maps of solar radiation, and simple energy production models, the potential of the energy 
output from different technologies can be evaluated and compared. Using GIS tools for potential 

 
80 See https://globalsolaratlas.info/map.   
81 See https://irena.masdar.ac.ae/gallery/#gallery.  

https://globalsolaratlas.info/map
https://irena.masdar.ac.ae/gallery/#gallery
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assessment, terrain slopes and additional land constraints must be considered for large projects. 
During this screening process, the nature of local aerosols and their spatiotemporal variability 
might need to be considered. Because widely different sources of information might be available 
at that stage, it is important to define appropriate comparison parameters among the solar 
resource data sources and to clarify the definition of variability, error, and uncertainty; thus, 
variability needs to be identified, mainly at the interannual level, and distinguished from the 
uncertainty of the model. Ideally, considering the uncertainties from each data source, a common 
“most probable” range should be obtained, which should include the expected or “true” value. 
Temporal and spatial variability is addressed in this chapter through the COV statistic, which 
can be determined by using long time series of measured or modeled data for the site and its 
surroundings. 

In the feasibility assessment stage, typical solar radiation series are needed for plant simulation 
and for economic/profitability analysis. Typical annual time series are provided by a TMY, 
TRY, DRY, Typical global horizontal irradiance year (TGY), or Typical direct normal 
irradiance year (TDY). In addition to the review of typical meteorological data series generation 
for solar energy simulation, this chapter reviewed the proposed procedures for the analysis of the 
interannual variability and the generation of series of a specific POE, such as P90; thus, to 
evaluate the profitability and payback of a project, simulations of its behavior during bad years 
are needed. Section 4.8 specifically deals with the issues of combining data sets and reducing 
their uncertainty through site adaptation processes. These steps are very important for a precise 
feasibility assessment and to guarantee bankability, particularly for projects with large associated 
investments. 

During and before the plant’s construction phase, solar radiation data are needed to refine the 
yield estimation and to minimize the expected profitability uncertainties; thus, the value of the 
energy generated by a solar installation depends on the system’s output and on the price offered 
for that energy at the time it is generated. Methods for the yield estimation of non-concentrating 
PV projects and of CST projects have been discussed. Additional meteorological inputs that are 
necessary for yield estimation, as well as solar radiation characteristics, such as its spectral and 
angular distribution, were also discussed.  

For power plant operation, the solar resource information must include high-quality, on-site 
measurements to qualify the plant’s performance as well as accurate irradiance forecasts for 
operation and revenue optimization. This chapter’s final section discussed the type of solar 
radiation data needed for different types of solar projects, such as flat-plate thermal collectors, 
solar heating and cooling in buildings, smart electric grids, solar desalination, and other chemical 
applications.  
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10.1 Introduction  
Advancing renewable energy technologies will require improvements in our understanding of 
solar radiation resources. This chapter briefly describes areas of research and development 
identified as emerging technology needs. The International Energy Agency (IEA) Photovoltaic 
Power System (PVPS) Task 16 work plan for the second phase (2020–2023) on “solar resource 
for high penetration and large-scale applications” seeks to address significant parts of the 
research-and-development needs presented in this chapter. 

10.2 Application, Evaluation, and Standardization of Solar Resource 
Data  

With the increasing diversity and complexity of solar resource data, it is necessary to invest 
significant effort in the application, evaluation, and standardization of these data. Users need to 
know which data sets are most suitable for their applications, and this requires readily available 
evaluations of existing products. As examples, such evaluations are planned within the IEA 
PVPS Task 16 related to satellite and numerical weather prediction-based (NWP-based) 
radiation data as well as ASI-based radiation nowcasts.  

To create an efficient market, best practices and standards for the creation, documentation, and 
application of the resource data are needed. Task 16 contributes to relevant work in international 
standardization bodies, such as the International Organization for Standardization, International 
Electrotechnical Commission, and ASTM International. The standardization activities are related 
to solar spectra, radiation measurements, calibration and test methods, radiation forecasts, data 
formats, meteorological measurements for power plant performance measurement, and even to 
fundamental issues such as vocabulary. Some resource products are currently not used to their 
full extent. The potential benefits of their full applications might be understood by most 
stakeholders, but methods to use the data are yet to be developed or implemented. Examples of 
such resource products include meteorological parameters, such as time series of soiling rates; 
spectral mismatch factors; or circumsolar radiation data that are often included only as an 
approximation in power plant models. Other examples are probabilistic forecasts or ASI-based 
highly resolved spatial forecasts. Users and data providers must collaborate closely to create the 
best data sets and to fully exploit the potential of such resource data.  

10.2.1 Improvement in Irradiance Quality Control Procedures 
PVPS Task 16 is actively engaged in developing better and more stringent methods of evaluating 
the quality of irradiance measurements based on time series of experimental data. The primary 
objective is to produce a high-quality irradiance database for the validation of satellite-derived 
irradiance data sets at hundreds of sites worldwide. The new developments consist of improving 
and augmenting the few existing quality-control algorithms in the literature, such as those 
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discussed in Section 7.7, which follow Long and Shi (2008) and Maxwell, Wilcox, and Rymes 
(1993).  

The improved methodology includes the implementation of new tests to check many difficult-to-
detect and small perturbations, such as time stamp errors, mistracking, morning/afternoon 
asymmetry, soiling, shading, or calibration drift. The quality-control algorithm will allow for an 
easy visualization of the results for further inspection by trained observers. The overall 
applicability and repeatability of the process are being evaluated by having a group of experts 
separately quality-control several common data sets and comparing their results in a kind of 
round-robin experiment.  

It is expected that a user-friendly and public-domain fully functional code will be released at the 
conclusion of this effort. Its wide adoption should eventually reduce the uncertainty in measured 
data sets, simplify the practice of solar resource assessments, and ultimately benefit the whole 
solar industry. 

10.2.2 Evaluation of Solar Cadasters  
As noted by the International Renewable Energy Agency (IRENA 2019), to face the challenges 
of supplying renewable energy in steadily growing cities, there will be a new focus on 
photovoltaics (PV) at the urban scale. The PV potential of rooftops—as well as parking shades, 
roads, etc.—can be modeled with high-spatial-resolution solar mapping techniques in the form of 
solar cadasters. Today, such cadasters are emerging as products for many urban areas, notably in 
North America and Europe.82 Some solar cadasters even cover a whole country.83 

Nevertheless, the methodology and the quality of such products are generally not well known. 
For example, Walch et al. (2020) compared several solar cadasters existing over the same 
regions and reported large discrepancies. These discrepancies and quality shortcomings could be 
caused by methodology differences in various aspects, such as (1) the nature (vector, raster) and 
the spatial resolution of the digital surface model used for the 3D modeling; (2) the source 
(satellite, network of radiation sensors, NWP, etc.), the model (all-sky, clear-sky, etc.), and the 
interpolation method used for the solar radiation data; or (3) the simplifications/approximations 
in the physical layout or in the PV yield simulations (tilted or horizontal planes, partial 
shadowing of PV modules, etc.). Task 16 of the IEA PVPS will assess some of these models and 
provide advice for best practices when using solar cadasters.  

Additionally, the use of solar cadaster methodologies based on high-resolution solar modeling in 
urban-scale cadasters will be assessed for extended purposes, such as modeling and forecasting 
solar energy in cities, grid planning, or congestion management. 

10.3 Forecasting Solar Radiation and Solar Power 
Solar power forecasting will be an essential component of the future energy supply system, 
which will use large amounts of variable solar power. Solar power forecasting systems already 
contribute to the successful integration of considerable amounts of solar power to the electric 

 
82 See Google Project Sunroof (https://www.google.com/get/sunroof) or In Sun We Trust 
(http://www.insunwetrust.solar/). 
83 See Switzerland (http://www.sonnendach.ch). 

http://www.google.com/get/sunroof
http://www.insunwetrust.solar/
http://www.sonnendach.ch/
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grid, and solar power forecasting is receiving unprecedented attention from various scientific 
communities because the solar resource variability must be managed to maintain the stability of 
the grid and to enable optimal unit commitment and economic dispatch. Consequently, new 
techniques and approaches are being proposed to improve the accuracy of the models to provide 
solar radiation and power forecasts. 

The earlier chapters of this handbook covered the different approaches being used in current 
research on irradiance forecasting and solar power forecasting; for convenience, these two tightly 
related topics are referred to collectively as “solar forecasting” (Yang et al. 2018). Improvements 
in NWP-based irradiance forecasting could emerge from improvements in resolution, data 
assimilation, and parameterizations of clouds and radiation. Specific forecasting products would 
need to be developed for areas where dust storms or smoke episodes can result in adverse 
situations and to prepare an optimal schedule for post-episode cleaning operations, especially 
where water is scarce. Moreover, to overcome NWP limitations, which lead to unavoidable 
errors in the estimation of the possible future atmospheric states (and are amplified at both higher 
forecast horizons and spatiotemporal resolutions), probabilistic forecast approaches are being 
proposed. In addition, the development and application of rapid-update-cycle models84 has high 
potential to improve intraday forecasting. Such models need to be properly initialized; hence, 
satellite detection of cloud height and cloud optical depth as well as other atmospheric states 
remain research priorities. A further opportunity emerges from the expansion of large-eddy 
simulation approaches to increasingly larger domain sizes that could soon bring operational 
mesoscale forecasting within reach (Schalkwijk et al. 2015). Large-eddy simulation will reduce 
the need for cloud parameterization approaches that are challenged by the disparity between grid 
resolution and cloud turbulence scales in standard NWP methods, and it is expected to bring a 
new level of accuracy to NWP. 

Forecasting techniques based on cloud motion will benefit from enhancements in cloud-detection 
approaches for both satellite-based and ASI-based methods. Improved update cycles of satellite 
imagery (e.g., 5-minute updates in the United States through the Geostationary Operational 
Environmental Satellite - R Series) will provide information that could so far be derived only 
from sky imagers for very short-term forecasting. It has become increasingly clear that accurate 
physics-based forecasting with sky imagers requires 3D reconstruction of the cloud field (Kurtz, 
Mejia, and Kleissl, 2017), and further research in this area is required. 

With respect to statistical methods, apart from model development, the availability of high-
quality, current measurement data of solar irradiance and solar power will be of critical 
importance. Increasingly, powerful artificial intelligence techniques are being developed that 
should lead to substantial progress. Finally, an optimized combination (or hybridization) of 
different physical and statistical models will be an advantage for any solar power prediction 
system (Guermoui et al. 2020; Marquez, Pedro, and Coimbra 2013). 

10.3.1 Probabilistic Solar Forecasting 
The specification of the expected uncertainty of solar irradiance or power predictions for 
different weather situations provide valuable additional information to forecast users and serve as 

 
84 See https://ruc.noaa.gov/.  

https://ruc.noaa.gov/
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a decision aid; therefore, users are increasingly demanding that probabilistic forecasts replace 
traditional deterministic ones. 

Probabilistic forecasting—through the quantification of probabilities of future outcomes and 
information about uncertainty in addition to the commonly provided single-valued (best-
estimate) prediction—has gained interest as an approach to providing a more comprehensive 
view than the traditional deterministic paradigm. This can be done for a specific site, or it could 
be extended over a geographic region from gridded deterministic NWP forecasts (Davò et al. 
2016). Nevertheless, despite these advantages, a relevant way of quantifying the benefits of 
probabilistic forecasting is to assess its potential economic value. 

Probabilistic forecasting could be based on the use of NWP ensemble prediction systems as well 
as on the statistical analysis of the distributions (or quantiles of distributions) of historic 
predictions and measurements. In this regard, several post-processing techniques have been 
explored to generate probabilistic forecasts (Antonanzas et al. 2016; Van der Meer, Widén, and 
Munkhammar 2018), and more effort can be devoted to evaluate multiple methods on the same 
data set to compare their performance. In addition to pursuing these promising strategies, new 
frameworks could be explored for generating probabilistic forecasts. As an example, the 
generation of multiple plausible weather scenarios along with current weather prediction and 
real-time data from ground measurements and satellite images can be used together to estimate 
the probability of occurrence of different atmospheric states and the associated solar resource. 

In addition to exploring probabilistic generation schemes, key areas of investigation that can 
produce rich dividends are post-processing methods to improve forecasts by removing 
systematic biases and providing spatial and temporal downscaling. New techniques and the 
analysis of a variety of potential target variables (such as the ensemble mean or variance of 
forecasts) can be investigated (Gastón et al. 2018). 

The following upcoming challenges have been identified for ongoing research on probabilistic 
solar forecasting. 

10.3.1.1 Standardized Framework for the Evaluation of Solar Probabilistic 
Forecasts 

Although it is less mature than wind probabilistic forecasting, in recent years the topic of solar 
probabilistic forecasting has seen a surge in landmark publications (Bakker et al. 2019; 
Doubleday, Hernandez, and Hodge 2020; Li and Zhang 2020; Van der Meer, Widén, and 
Munkhammar 2018; von Loeper et al. 2020; Yagli, Yang, and Srinivasan 2020; Yang 2019). 
Unfortunately, Lauret, David, and Pinson (2019) noted that the solar forecasting community uses 
diverse verification tools and sometimes even improper scoring rules for evaluating the quality 
of the forecasts. This fact does not facilitate forecast analysis and performance comparisons of 
the different probabilistic forecasting techniques and therefore hampers the dissemination of 
probabilistic forecasts among forecast users and developers. The challenge is to provide the 
forecasting solar community with a comprehensive, standardized, rigorous, and well-accepted 
verification framework. This should comprise a set of diagnostic tools, proper scoring rules, and 
skill scores mostly originating from the weather forecast verification community. Further, 
specific scoring rules (e.g., energy score or Variogram score) should be used to assess the quality 
of the multivariate forecasts (see Chapter 8, Section 8.6). The objective will be also to clearly 
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define the different reference/benchmark models used to gauge the performance of any newly 
proposed methods. In addition, the verification framework should benefit from standardized 
publicly available data sets.  

10.3.1.2 Generate Multivariate Probabilistic Forecasts  
Until now, most work related to solar probabilistic forecasts has been restricted to the univariate 
context. This corresponds to probabilistic forecasts that do not consider spatiotemporal 
dependencies. Because of complex mechanisms such as cloud passage, however, solar power 
generation behaves as a random variable distributed in space and time (Golestaneh, Gooi, and 
Pinson 2016). The next challenge will be to design multivariate probabilistic models that can 
capture the spatiotemporal correlations present in solar forecasts. The scenarios or the space-time 
trajectories generated by this type of model will provide better inputs than univariate forecasts in 
grid power optimization problems, such as unit commitment or optimal power flow.  

10.3.1.3 Establish a Link Between Quality and Value of Probabilistic Forecasts85 
In solar forecasting, most studies concentrate on the evaluation of the quality of the probabilistic 
forecasts. In contrast, very few publications are devoted to the assessment of their value. Recall 
that quality refers to the correspondence between forecasts and the observations, whereas value 
is linked to the benefit (economic or otherwise) gained from the use of these probabilistic 
forecasts in an operational context. As noted by Pinson (2013) for wind probabilistic forecasts, 
however, it is not clear how improving the quality of these forecasts—in terms of improved skill 
scores or increased probabilistic reliability—could lead to added value for decision makers. 
Hence, in the context of decision making, more work is needed to link the probabilistic metrics 
used by the forecasters and the utility functions defined by the decision makers.  

10.3.2 Solar Forecast Based on All-Sky Imagers 
ASI-based solar forecasting is a recent forecasting method, and many options to improve these 
forecasts can still be explored. The selection of the most promising development directions will 
be enabled by comparisons of different ASI forecasts, such as the one organized within the IEA 
PVPS Task 16. Future research on both the hardware and software sides can be expected. The 
first results of a common benchmark of different ASI systems will also be published. 

Related to the hardware, the investigation of different camera types (infrared/visible, high 
dynamic range) is ongoing. Also, the combination of a few cameras or networks of cameras will 
continue. Networks of ASIs covering several hundred square kilometers are an option to create 
highly resolved nowcasts for whole regions. The combination of many cameras also allows for 
an increase in the forecast horizon and accuracy. In addition, downward-looking shadow cameras 
on mountains, buildings, or other elevated positions to derive irradiance forecasts is a promising 
topic of research (Kuhn et al. 2017, Kuhn et al., 2019, Wilbert et al. 2020).  

Current evaluation software is often simplistic, and many approximations are applied. ASI 
images contain a large amount of information that is currently not fully used to avoid these 
approximations. Related to software developments, the application of artificial intelligence will 
certainly increase for ASI forecasts. 

 
85 This point should also be extended to deterministic solar forecasts. 
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10.3.3 Artificial Intelligence for Solar Forecast 
The predictive capabilities of artificial intelligence hold a lot of promise for solar forecasting, 
and for that reason efforts are increasing to identify their applications to improve NWP models. 
Among those models, it is important to highlight machine learning and, specifically, deep 
learning. The term machine learning encompasses all artificial intelligence techniques that give 
computers the ability to learn without being explicitly programmed to do so. Although machine 
learning was first used in the late 1950s, the current form of machine learning is commonly 
assumed to have started in the 1980s because of the increased amount of available data and novel 
approaches to treat them. Deep learning is a recent (circa 2010) subset of machine learning that 
makes the computation of multilayer neural networks feasible and enhances the capability to find 
patterns in unstructured or unlabeled data. 

A promising application of deep learning neural networks is to replace computationally 
expensive parameterizations of certain physical schemes in NWP models because they involve 
modeling at scales much greater than the actual phenomena. The search for less expensive 
models favors higher resolution simulations for generating short-term forecasts at the local scale 
that need to be computed within short periods of time. Deep learning has also gained interest in 
satellite meteorology because it can provide rapid answers from models trained with tens of 
thousands of images, and its applications to solar forecasts could be explored for resolving 
weather patterns (in urban areas or large solar power plants) that are not achievable by traditional 
NWP models. In particular, convolutional neural networks (a class of deep neural networks) can 
be explored to provide forecasts as an image-to-image translation problem based on a filtering 
process that can be used to detect meaningful patterns. Within this data-driven (or “physics-
free”) approach, the atmospheric physical processes are emulated from the training examples 
alone—not by incorporating a priori knowledge of how the atmosphere actually works—which 
can generate nearly instantaneous forecasts. The accuracy and the temporal and spatial 
resolutions of this approach are yet to be explored. 

Finally, to exploit the capabilities that artificial intelligence can bring to solar forecasting, 
models should be trained by vast amounts of granular data captured with a network of measuring 
instruments. This could comprise low-cost, good-performance radiometers measuring solar 
radiation, sky cameras providing cloud screening, and spaceborne instruments dedicated to the 
observation of clouds, aerosols, and climate change indicators (Gueymard 2017). In addition, 
especially in urban environments, Internet of Things sensors (such as street cameras, connected 
cars, drones, or cell towers) can be useful for this purpose, where high spatial resolution could 
probably be achieved. In the same vein, smart sensors might be useful for monitoring accurate 
demand forecasting together with renewable generation forecasting in the search for the 
optimization of economic load dispatch and to improve demand-side management and 
efficiency. 

Yet the lack of transparency that usually accompanies artificial intelligence models (i.e., 
retracing the path that the model took to reach its conclusion) has drawbacks: the difficulty of 
translating the information generated into basic principles (or physics) and interpreting the 
information to determine what is happening in the natural world and apply the knowledge gained 
at a particular project site to other regions. Consequently, an appropriate strategy could benefit 
from the optimized combination of both physical and artificial intelligence-based models. 
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10.3.4 Firm Photovoltaic Power 
Grid-connected solar power generation, either dispersed or centralized, has developed and grown 
at the margin of a core of dispatchable and baseload conventional generation. Its economics and 
management have required increasingly versatile and precise historical and operational solar 
resource information with increasing penetration levels. Operational solar forecasts have become 
central to transmission system operation in regions with significant solar penetration levels—for 
example, energy markets and load ramp management. 

The challenge ahead for grid-connected solar is to go beyond the margin and the context of 
underlying conventional generation management. For wind, the transformation of intermittent 
variable solar power generation into firm, effectively dispatchable power generation is a 
prerequisite to the gradual displacement of the underlying conventional generation core. The IEA 
PVPS Task 16 will focus on this variable-to-firm generation transformation by developing and 
analyzing the data, methodologies, and models that will cost-optimally enable this 
transformation in pertinent grid-connected contexts defined by: 

• Their geographic extent (from single plants to balancing area fleets) 
• Their level of penetration, from current to ultrahigh levels 
• The considered solar technologies: PV and/or CST 
• The economics of firm power generation enablers, in particular storage technologies, 

including conventional electrochemical batteries, thermal storage, and pumped 
hydropower 

• The economics of nontraditional firm power generation enablers, such as operational 
curtailment; whereas some years ago output curtailment of expensive PV (e.g., via peak 
output inverter limitation) was not economically sensible, it will likely become standard 
practice in future systems.  

A logical initial step in the direction of firm solar power generation is firm solar power 
forecasting, where forecast errors are operationally balanced by these enablers. The end-game 
objective is the delivery of 24/7 energy capable of entirely displacing conventional generation. 

10.4 Additional Parameters 
Although direct normal irradiance, global horizontal irradiance, and global tilted irradiance are 
the most important meteorological input parameters for solar power plant yield, several 
additional parameters must be provided at high resolution for accurate yield analysis. Solar 
energy-specific measurands include the soiling rate of plant components, albedo, spectral 
mismatch factors, the sunshape/circumsolar radiation, and the extinction of radiation between the 
mirrors and the receiver of tower power plants. Often, no site-specific information on these 
properties is available, which results in remarkable impacts on the accuracy of the yield 
prediction; hence, these parameters must be studied in more detail in the future. This topic will 
continue to be investigated under Subtask 1 of the IEA PVPS Task 16. Similar to the increasing 
interest in albedo data for bifacial PV modules, other technological developments might also 
trigger research on further additional parameters. 
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10.5 Effects of Climate Change on Solar Resource Assessments 
Changes in atmospheric aerosol loading from natural causes or industrial pollution, changing 
patterns of clouds, relative humidity, precipitation, and other climatic variables might have recently 
affected solar resource availability and could affect it further in the future (Huber et al. 2016).  

This could be important when estimating the performance of a solar power plant throughout the 
system’s design life (approximately 25 years). Research is needed to advance climate modeling 
capabilities and to merge the outputs of these models with advanced system performance models. 
The climate of the future can follow different scenarios, and aerosol scenarios are expected to 
matter most with respect to the solar resource. In contemporary climate modeling, aerosol 
pollution scenarios are considered independent from greenhouse gas scenarios. Rao et al. (2017) 
describe various aerosol scenarios in terms of “shared socioeconomic pathways” that depend on 
assumed “strong,” “medium,” and “weak” policies against aerosol pollution. These scenarios are 
included in the current generation of climate model runs (Collins et al. 2017). In parallel, 
geoengineering experiments, aiming at injecting various types of reflecting particles into the 
stratosphere as an attempt to curb climate change, are already starting. Such experiments, if 
generalized, might completely disrupt all current estimates of the future solar resource (Smith et 
al. 2017).  

The identification and treatment of years with impacts of exceptionally strong volcanic eruptions 
should be standardized because they impact the probabilities of exceedance, which are a key 
factor in the bankability of large solar systems. Further investigation is needed, including liaising 
with the volcanology scientific community. The last major eruption with a global effect on 
aerosols happened in 1991 at Mount Pinatubo in the Philippines, before solar energy applications 
were widespread, so such eruptions have been forgotten by the solar energy industry. Additional 
focus will be put on climate change effects when conducting long-term analyses. Subtask 2 of 
IEA PVPS Task 16 will seed further progress in this area, e.g., to precisely assess the risk of 
major volcanic eruptions. 

References 
Antonanzas, J., N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, and F. Antonanzas-
Torres. 2016. “Review of Photovoltaic Power Forecasting.” Solar Energy 136: 78–111. 
https://doi.org/10.1016/j.solener.2016.06.069.  

Bakker, K., K. Whan, W. Knap, and M. Schmeits. 2019. “Comparison of statistical post-
processing methods for probabilistic NWP forecasts of solar radiation.” Solar Energy 191: 138–
50. https://doi.org/10.1016/j.solener.2019.08.044.  

Collins, W. J., J.-F. Lamarque, M. Schulz, O. Boucher, V. Eyring, M. I. Hegglin, A. Maycock, 
G. Myhre, M. Prather, D. Shindell, and S. J. Smith. 2017. “AerChemMIP: Quantifying the 
Effects of Chemistry and Aerosols in CMIP6.” Geoscientific Model Development 10: 585–607. 

Davò, F., S. Alessandrini, S. Sperati, L. Delle Monache, D. Airoldi, and M. T. Vespucci. 2016. 
“Postprocessing Techniques and Principal Component Analysis for Regional Wind Power and 
Solar Irradiance Forecasting.” Solar Energy 134: 327–38. 
https://doi.org/10.1016/j.solener.2016.04.049. 

https://doi.org/10.1016/j.solener.2016.06.069
https://doi.org/10.1016/j.solener.2019.08.044
https://doi.org/10.1016/j.solener.2016.04.049


Chapter 10-9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Doubleday, K., V. V. S. Hernandez, and B.-M. Hodge. 2020. “Benchmark Probabilistic Solar 
Forecasts: Characteristics and Recommendations.” Solar Energy 206: 52–67. 
https://doi.org/10.1016/j.solener.2020.05.051.  

Gastón, M., C. F. Peruchena, A. Bernardos, and J. L. Casado. 2018. “Statcasting: A Machine 
Learning Based Methodology for Post-Processing Ensemble Predictions of Direct Normal Solar 
Irradiance.” AIP Conference Proceedings 2033 (1): 190006. https://doi.org/10.1063/1.5067191.  

Golestaneh, F., H. B. Gooi, and P. Pinson. 2016. “Generation and Evaluation of Space–Time 
Trajectories of Photovoltaic Power.” Applied Energy 176: 80–91. 
https://doi.org/10.1016/j.apenergy.2016.05.025.  

Guermoui, M., F. Melgani, K. Gairaa, and M. L. Mekhalfi. 2020. “A Comprehensive Review of 
Hybrid Models for Solar Radiation Forecasting.” Journal of Cleaner Production 258: 120357. 

Gueymard, C. 2017. “A Personal Vision: The Future of Solar Energy and why it Matters.” Open 
Access Journal of Photoenergy 1: 2. https://doi.org/10.15406/mojsp.2017.01.00002.  

Huber, I., L. Bugliaro, M. Ponater, H. Garny, C. Emde, and B. Mayer. 2016. “Do Climate 
Models Project Changes in Solar Resources?” Solar Energy 129: 65–84. 
https://doi.org/10.1016/j.solener.2015.12.016.  

International Renewable Energy Agency (IRENA). 2019. Solar Simulators: Application to 
Developing Cities. Abu Dhabi. ISBN: 978-92-9260-099-0. https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Solar_simulators_2019.PDF. 

Kuhn P., S. Wilbert, C. Prahl, D. Schüler, T. Haase, T. Hirsch, M. Wittmann, L. Ramirez, L. 
Zarzalejo, A. Meyer, L. Vuilleumier, P. Blanc, and R. Pitz-Paal. 2017. “Shadow Camera System 
for the Generation of Solar Irradiance Maps.” Solar Energy 157: 157–70. 
https://doi.org/10.1016/j.solener.2017.05.074. 

Kuhn, P., D. Garsche, S. Wilbert, B. Nouri, N. Hanrieder, C. Prahl, L. Zarzarlejo, J. Fernández, 
A. Kazantzidis, T. Schmidt, D. Heinemann, P. Blanc, and R. Pitz-Paal. 2019. “Shadow-Camera 
Based Solar Nowcasting System for Shortest-Term Forecasts.” Meteorologische Zeitschrift. 
https://doi.org/DOI 10.1127/metz/2019/0954. 

Kurtz, B., F. A. Mejia, and J. Kleissl. 2017. “A Virtual Sky Imager Testbed for Solar Energy 
Forecasting.” Solar Energy 158: 753–59. 

Lauret, P., M. David, and P. Pinson. 2019. “Verification of Solar Irradiance Probabilistic 
Forecasts.” Solar Energy 194: 254–71. https://doi.org/10.1016/j.solener.2019.10.041.  

Li, B., and J. Zhang. 2020. “A Review on the Integration of Probabilistic Solar Forecasting in 
Power Systems.” Solar Energy 210: 68–86. 

Long, C. N., and Y. Shi. 2008. “An Automated Quality Assessment and Control Algorithm for 
Surface Radiation Measurements.” The Open Atmospheric Science Journal 2: 23–37. 

https://doi.org/10.1016/j.solener.2020.05.051
https://doi.org/10.1063/1.5067191
https://doi.org/10.1016/j.apenergy.2016.05.025
https://doi.org/10.15406/mojsp.2017.01.00002
https://doi.org/10.1016/j.solener.2015.12.016
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Solar_simulators_2019.PDF
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Solar_simulators_2019.PDF
https://doi.org/10.1016/j.solener.2017.05.074
https://doi.org/DOI%2010.1127/metz/2019/0954
https://doi.org/10.1016/j.solener.2019.10.041


Chapter 10-10 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Marquez, R., H. T. C. Pedro, and C. F. M. Coimbra. 2013. “Hybrid Solar Forecasting Method 
Uses Satellite Imaging and Ground Telemetry as Inputs to ANNs.” Solar Energy 92: 176–88. 

Maxwell, E., S. Wilcox, and M. Rymes. 1993. User’s Manual for SERI QC Software—Assessing 
the Quality of Solar Radiation Data (NREL/TP-463-5608). Golden, CO: National Renewable 
Energy Laboratory. http://www.nrel.gov/docs/legosti/old/5608.pdf. 

Pinson, P. 2013. “Wind Energy: Forecasting Challenges for Its Operational Management.” 
Statistical Science 28, 564–85. https://doi.org/10.1214/13-STS445. 

Rao, S., et al. 2017. “Future Air Pollution in the Shared Socio-Economic Pathways.” Global 
Environmental Change 42: 346–58. 

Schalkwijk, J., H. J. Jonker, A. P. Siebesma, and E. Van Meijgaard. 2015. “Weather Forecasting 
Using GPU-Based Large-Eddy Simulations.” Bulletin of the American Meteorological 
Society 96 (5): 715–23. 

Smith, C. J., J. A. Crook, R. Crook, L. S. Jackson, S. M. Osprey, and P. M. Forster. 2017. 
“Impacts of Stratospheric Sulfate Geoengineering on Global Solar Photovoltaic and 
Concentrating Solar Power Resource.” Journal of Applied Meteorology and Climatology 56: 
1483–97. http://dx.doi.org/10.1175/ JAMC-D-16-0298.s1. 

Van der Meer, D. W., J. Widén, and J. Munkhammar. 2018. “Review on Probabilistic 
Forecasting of Photovoltaic Power Production and Electricity Consumption.” Renewable and 
Sustainable Energy Reviews 81: 1484–512. 

Von Loeper, F., P. Schaumann, M. de Langlard, R. Hess, R. Bäsmann, and V. Schmidt. 2020. 
“Probabilistic Prediction of Solar Power Supply to Distribution Networks, Using Forecasts of 
Global Horizontal Irradiation.” Solar Energy 203: 145–56. 
https://doi.org/10.1016/j.solener.2020.04.001.  

Walch, A., R. Castello, N. Mohajeri, and J.-L. Scartezzini. 2020. “Big Data Mining for the 
Estimation of Hourly Rooftop Photovoltaic Potential and its Uncertainty.” Applied Energy 262: 
114404. https://doi.org/10.1016/J.APENERGY.2019.114404.  

Wilbert, S., B. Nouri, N. Kötter-Orthaus, N. Hanrieder, C. Prahl, P. Kuhn, L. Zarzalejo, and R. 
Lázaro. 2020. “Irradiance Maps from a Shadow Camera on a Mountain Range.” Proceedings of 
the SolarPACES Conference. 

Yagli, G. M., D. Yang, and D. Srinivasan. 2020. “Ensemble Solar Forecasting Using Data-Driven 
Models with Probabilistic Post-Processing through GAMLSS.” Solar Energy 208: 612–22. 

Yang, D. 2019. “A Universal Benchmarking Method for Probabilistic Solar Irradiance 
Forecasting.” Solar Energy 184: 410–16. 

Yang, D., J. Kleissl, C. A. Gueymard, H. T. C. Pedro, and C. F. M. Coimbra. 2018. “History and 
Trends in Solar Irradiance and PV Power Forecasting: A Preliminary Assessment and Review 
Using Text Mining.” Solar Energy 168: 60–101. https://doi.org/10.1016/j.solener.2017. 

http://www.nrel.gov/docs/legosti/old/5608.pdf
https://doi.org/10.1214/13-STS445
http://dx.doi.org/10.1175/%20JAMC-D-16-0298.s1
https://doi.org/10.1016/j.solener.2020.04.001
https://doi.org/10.1016/J.APENERGY.2019.114404
https://doi.org/10.1016/j.solener.2017

	Foreword
	Preface
	Acknowledgments
	List of Acronyms
	Table of Contents
	1 Why Solar Resource Data Are Important to Solar Power
	2 Overview of Solar Radiation Resource Concepts
	2.1 Introduction
	2.2 Radiometric Terminology
	2.3 Extraterrestrial Irradiance
	2.4 Solar Constant and Total Solar Irradiance
	2.5 Solar Geometry
	2.6 Solar Radiation and the Earth’s Atmosphere
	2.7 Solar Resource and Components
	References

	3 Measuring Solar Radiation
	3.1 Instrumentation 
	3.2 Radiometer Types
	3.3 Measurement Station Design Considerations
	3.4 Station and Network Operations
	References

	4 Modeling Solar Radiation: Current Practices
	4.1 Introduction
	4.2 Estimating the Direct and Diffuse Components from Global Horizontal Irradiance
	4.3 Estimating Irradiance on a Tilted Surface
	4.4 Introduction to Satellite-Based Models
	4.5 Clear-Sky Models Used in Operational Models
	4.6 All-Sky Models Used in Operational Models
	4.7 Numerical Weather Prediction-Based Solar Radiation Estimates
	4.8 Site Adaptation: Merging Measurements and Models
	4.9 Summary
	Appendix: Currently Available Satellite-Based Data Sets
	References

	5 Further Relevant Meteorological Parameters
	5.1 Wind
	5.2 Ambient Temperature and Relative Humidity
	5.3 Atmospheric Pressure
	5.4 Precipitation
	5.5 Aerosols and Water Vapor
	5.6 Spectral Irradiance
	5.7 Ultraviolet Irradiance 
	5.8 Soiling
	5.9 Circumsolar Radiation
	5.10 Beam Attenuation Between Heliostats and Receiver in Tower Power Plants
	5.11 Surface Albedo
	References

	6 Solar Resource Data
	6.1 Introduction
	6.2 Solar Resource Data Characteristics
	6.3 Long-Term and Typical Meteorological Data Sets
	References

	7 Solar Irradiance Uncertainty and Data Quality Assessment
	7.1 Introduction
	7.2 Measurement Uncertainty
	7.3 Uncertainty Quantification of Solar Resource Estimates
	7.4 Historical Uncertainty Quantification Approach of Solar Resource Estimates from Models
	7.5 Current Uncertainty Quantification Approach of Solar Resource Estimates from Models
	7.6 Modeled Data Uncertainty Estimation Challenges
	7.7 Methods of Automated Data Quality Evaluation
	References

	8 Forecasting Solar Radiation and Photovoltaic Power
	8.1 Introduction
	8.2 Empirical and Physical Solar Irradiance Forecasting Methods 
	8.3 Irradiance Forecasting Based on Irradiance Time Series and Post-Processing with Statistical and Machine Learning Methods
	8.4 PV Power Forecasting and Regional Upscaling 
	8.5 Evaluation of Irradiance and PV Power Forecasts
	8.6 Probabilistic Solar Forecasts
	8.7 Summary and Recommendations for Irradiance Forecasting
	References

	9 Applying Solar Resource Data to Solar Energy Projects
	9.1 Introduction and Background
	9.2 Data Applications for Site Screening and Performance Assessment
	9.3 Solar Radiation Data Requirements for Feasibility Assessments 
	9.4 Solar Radiation Data Requirements for Yield Estimation
	9.5 Solar Resource Data for Plant Operations
	9.6 Variability of Solar Energy Production
	9.7 Applying Solar Resource Data to Other Types of Solar Energy Projects
	9.8 Summary of Applications of Solar Resource Data
	References

	10 Future Work
	10.1 Introduction 
	10.2 Application, Evaluation, and Standardization of Solar Resource Data 
	10.3 Forecasting Solar Radiation and Solar Power
	10.4 Additional Parameters
	10.5 Effects of Climate Change on Solar Resource Assessments
	References




