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Abstract—High penetration renewable integration studies 
need high quality solar power data with spatial-temporal 
correlations that are representative of a real system. For 
instance, as additional solar power sites are added, the relative 
amount of variability should decrease due to spatial averaging 
of localized irradiance fluctuations. This presentation will sum­
marize the research relating sequential point-source sub-hour 
global horizontal irradiance (GHI) values to static, spatially 
distributed GHI values. This research led to the development 
of an algorithm for generating coherent sub-hour datasets that 
span distances ranging from 10 km to 4,000 km. The algorithm, 
in brief, generates synthetic GHI values at an interval of 
one minute, for a specific location, using SUNY/Clean Power 
Research, satellite-derived, hourly irradiance values for the 
nearest grid cell to that location and grid cells within 40 
km. During each hour, the observed GHI value for the grid 
cell of interest and the surrounding grid cells is related, via 
probability distributions, to one of five temporal cloud coverage 
classifications (class I, II, III, IV, V). Synthesis algorithms 
are used to select one-minute time step GHI values based on 
the classification of the grid cell of interest in a particular 
hour. Three primary statistical measures of the dataset are 
demonstrated: reduction in ramps as a function of aggregation; 
coherence of GHI values across sites ranging from 6 to 400 km 
apart over time scales from one minute to three hours; and 
ramp magnitude and duration distributions as a function of 
time of day and day of year. 

I. INTRODUCTION 

Changes in photovoltaic (PV) power or concentrating solar 
power (CSP) production can exceed 50% of the clear sky 
generation potential over two to five minutes, as seen in 
Fig. 1. Rapid changes in solar power output can impact 
markets with sub-hour intervals, reserve requirements, net 
load variability, regulation requirements, and the operation 
of other generators [1]–[4]. To capture these potentially 
challenging events in renewable energy integration studies, 
high temporal and spatial resolution solar power production 
data is needed. The qualities of the dataset, most relevant to 
an integration study, include: 

1) Solar power data must be time synchronized to the 
weather conditions during each time step and at each 
geographic location. 

2) Solar power data must have sufficient temporal resolu­
tion to capture site-specific solar power output ramps. 

3) Solar power data must have appropriate spatial-
temporal correlations to capture intra-plant and plant­
to-plant ramping correlations. 

4) Solar power data must have sufficient geographic res­
olution to represent the relative solar power injection 
into the power system at each location. 

Mills et al. explored the concept of coherence in their 
analysis of the spatial-temporal irradiance dataset in the 
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Fig. 1. Simultaneous irradiance measurements from two sites 70.4 km 
apart at two time scales, tstep = 1 minute (line) and satellite irradiance 
values, tstep = 60 minutes (dotted line with circles). The site near Boulder, 
CO is located at 39.911◦N -105.235◦W (gray) and the site near Golden, 
CO is located at 39.742◦N -105.180◦W (black). 

South Great Plains network [5]. Several studies show that 
the aggregation of solar power output, or irradiance, shows 
a reduction in the variability proportional to the geographic 
area of aggregation [5]–[10]. 

This paper describes the statistical measures of variability 
in both temporal and spatial irradiance datasets, the proba­
bilistic relationship between the datasets, and the algorithms 
used to model sub-hour irradiance data for the Western Wind 
and Solar Integration Study II (WWSIS II). Lastly, some 
examples from the WWSIS II are shown, as well as several 
measures of the quality of the dataset. 

II. IRRADIANCE VARIABILITY IN SPATIAL AND
 
TEMPORAL STATISTICAL ANALYSES
 

Sub-hour solar irradiance data is available in select lo­
cations throughout the United States [11], while hourly 
irradiance values from satellite images is available for years 
1998-2009 gridded at 0.1◦, roughly 10 km. The sub-hour 
irradiance data used in this study was collected through 
the National Renewable Energy Laboratory Measurement 
and Instrumentation Data Center (MIDC). Instrumentation, 
calibration, and data collection methods for ground-based 
irradiance data are documented by Stoffel et al. [12]. The 
locations of ground-measured, sub-hour irradiance used to 
derive the variability patterns in the dataset for the WWSIS 
II are in Table I. The hourly irradiance data from satellite 
images was made available by Clean Power Research (CPR). 
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CPR uses a semi-empirical model developed by Perez et 
al. [13], [14] to derive the irradiance at the surface of the 
earth from the visible channel of satellite images. A cloud 
cover index, based on an empirical relationship between 
the top of the atmosphere and surface radiation, is used 
to modify clear sky global horizontal irradiance (GHI) and 
estimate GHI at the ground consistent with the cloud cover 
in the visible satellite image. The CPR SolarAnywhere data 
product used in this research is the unshifted, snapshot 
dataset, which includes GHI, direct normal irradiance (DNI), 
diffuse horizontal irradiance (DFI), surface temperature, and 
surface wind speed [15]. 

TABLE I
 
LOCATIONS WITH MEASURED IRRADIANCE DATA AT A TEMPORAL
 

RESOLUTION OF ONE-MINUTE, MAINTAINED BY THE MEASUREMENT
 
AND INSTRUMENTATION DATA CENTER AT THE NATIONAL RENEWABLE
 

ENERGY LABORATORY.
 

Location Latitude Longitude Years 
Arcata, CA 40.880 -124.080 2009 
Los Angeles, CA 33.967 -118.423 2010 
Las Vegas, NV 36.060 -115.080 2006-2010 
Las Vegas, NV 36.086 -115.052 2006-2009 
Alamosa, CO 37.561 -106.086 2009 
Boulder, CO 39.911 -105.235 2005-2010 
Golden, CO 39.742 -105.180 2005-2010 

A. Clearness Index 

All irradiance values are converted to a fraction of the 
clear sky irradiance value called the clearness index (ci) to 
remove the diurnal effects of the solar zenith angle. The 
result is a number between 0 and 1, where 1 is clear sky 
conditions and 0 is no visible irradiance. To produce an 
accurate clear sky GHI profile for each site at each moment 
in time, we modified the Bird Clear Sky model [16] to 
fit the broadband aerosol optical depth, τA, to surrounding 
days that appear to be clear. τA is modified because it has 
the greatest affect on irradiance transmission. The aerosol 
density varies over the course of the day and by season. For 
instance, aerosol density decreases as the sun rises because 
of scattering and increases again as the sun sets. It is lowest 
in the summer months and highest in the winter months. 
In order to get a closer fit between the Bird Clear Sky 
model and actual clear days, we iteratively fit τA, hourly, 
to designated clear days and then transfer those calculated 
τA values to surrounding days. The steps of the algorithm 
are as follows: 

1) Using a wide range of τA: [0 : 0.001 : 1.1], the clear 
sky GHI value is calculated for a specific location at 
noon for each day of the year. 

2) Find the “best noon value” of τA by comparing the 
clear sky GHI to the actual GHI at noon. 

3) Using the “best noon value” of τA per day, we cal­
culate the hourly clear sky value for all hours of the 
year. 

4) We evaluate the net error between the clear sky and 
actual GHI values per day; select the days with a mean 
percentage difference between actual and clear hourly 
GHI values less than 10%. 

5) These selected days are then fit, hour-by-hour for 
the τA value that best fits the clear sky data to the 
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Fig. 2. Examples of the five classes of temporal variability are shown 
in plots (a) through (e). Classes I-III (a-c) are based on the width of 
the distribution of ramps. Classes IV-V (d,e) are characterized by a rapid 
change between two or more different cloud cover densities (e.g., clear sky 
with small, dense clouds moving at a high altitude). Panel (f) shows how 
the temporal classes are defined in terms of the mean (µci) and standard 
deviation (σci) of the clearness index for 60 consecutive minutes. 

measured GHI values. 
6) We propagate the hourly τA values for clear days to 

surrounding days. 
7) Finally, we run two smoothing functions: robust local 

regression using weighted linear least squares and a 
second degree polynomial on (i) time of day, seasonal 
variation with a multi-week span (i.e., smooth 8 am 
values over the entire year) and on (ii) sequential 
daytime values with an eight-hour span. 

For the CPR dataset, the first clear sky data point after 
sunrise and the last data point before sunset are modified 
to match the measured data, resulting in a ci equal to 1 for 
those two data points. 

B. Temporal Classification and Spatial Statistics 

The one-minute ci data is categorized into one of five 
classifications of cloud cover (Classes I-IV). Visual inspec­
tion of 60 consecutive one-minute values of ci, grouped by 
the mean (µci) and standard deviation (σci) of the clearness 
index over that period, yielded classification of irradiance 
variability into one of five classes, as shown in Fig. 2. 
Classes I, II, and III show relatively low variability, with 
less than 0.02%, 0.87%, and 4.53% of one-minute ramps 
exceeding 0.1 ci, respectively. Classes IV and V demonstrate 
distinct/sharp shifts in ci with greater than 20% of one-
minute ramps exceeding 0.1 ci. Class V irradiance variability 
is distinct from Class IV not by the magnitude of ramps (in 
fact, the portion of Class IV ramps between 0.05 and 0.2 
exceeds Class V), but by the physical interpretation of the 
temporal data: Class V represents clear sky conditions with 
intermittent clouds, while Class IV irradiance variability is 
characterized by multiple ci states. The temporal classifica­
tion scheme is based on inferential statistics. By grouping 
the 60 minute periods by mean and variance, we were able to 
make an inductive inference from a subset of observations to 
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Fig. 3. Three consecutive hours (from 1 pm to 3 pm) on Aug 10, 2005 
at SRRL. The spatial pattern shows a trend towards increasing cloudiness 
over the afternoon. 

the parameters of the whole group. The classification matrix 
based on µci and σci, as shown in Fig 2(f). 

Similar to the one-minute data, we converted satellite 
irradiance values into ci values. The satellite hourly data 
provides a snapshot of the sky at that location. We find 
that the single snapshot of irradiance has a correlation 
coefficient of 0.669 with the mean ci of the next 60 minutes, 
across all temporal classes, while the distance-weighted [17] 
mean of satellite ci data from approximately 40 nearby 
locations has a correlation coefficient of 0.736. This set of 
time-synchronized ci satellite data representing an area of 
approximately 4,500 km2 is called a patch. The middle of the 
satellite data area is called the point of interest, the location 
of the simulated data. Fig. 3 shows the patch and point of 
interest (left) associated with each ground-based irradiance 
measurement (right) for the following 60 minutes. Measures 
of the variance, mean, and statistical distribution of ci values 
in each patch, characterized at each hour, form the basis 
for the probability statistics relating patch data and temporal 
classification data. 

To develop a probabilistic relationship between a patch of 
snapshot ci and a class of sequential ci values, we evaluate 
co-located satellite snapshot irradiance values and ground-
based irradiance values. The pixel selected by the satellite is 
within 10 km of the ground-based measurement apparatus. 
Fig. 4 demonstrates the probability densities for the patch 
µci and σci for each of the five classes. The color scale, 
which ranges from 0 to 1, represents the probability that 
the combination of patch µci and σci are indicative of 
a particular variability class. This information is a visual 
representation of the lookup tables used to select a variability 
class prior to synthesizing one-minute time step ci values 
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Fig. 4. Probability density distribution of temporal classes across snapshot 
satellite patch measures: µci and σci. These are a visualization of the 
lookup tables used to select a temporal variability class given a patch of 
satellite data. 

from hourly patch ci values. 

III. SUB-HOUR IRRADIANCE ALGORITHM 

The sub-hour irradiance algorithm used to generate the 
WWSIS II dataset starts with associating a patch of snapshot 
satellite data with a temporal variability class via the lookup 
tables shown in Fig. 4. Patches with µci > 0.9 and a 
three-hour rolling average of ci, also greater than 0.9, are 
considered a special type of Class I, shown as Class 0 in 
Fig. 2(a). The algorithms for Classes I-III are similar in 
method, only differing in the distribution of ramps used to 
generate the sequential values of cimodeled. The algorithms 
for Classes IV-V are similar in concept, though they are 
based on different qualities of the patch dataset. This section 
describes the algorithms used to generate modeled ci values 
for a location. Lastly, we show the modeled and measured 
data at both the Boulder (Fig. 5) and Golden (Fig. 6) 
locations concurrently to demonstrate how two sites, with 
overlapping spatial statistics, result in correlated modeled 
data. 

A. Synthesizing Classes I-III 

Classes I-III, and Class 0, are based on the distribution of 
ramps derived from the six locations, throughout the year, as 
described in Table I. These classes have a slowly changing 
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ci, where the ramps, the change in ci from one minute to the 
next, are independent of the µci. The algorithm procedure 
is: 

1) Randomly select 60 ramps from the appropriate dis­
tribution for the temporal class. 

2) Sum the first ramp of the series with the satellite ci at 
the top of the hour. 

3) Cumulatively sum the first ramp with the second ramp 
to get the second ci value; continue through the 60th 

ramp to get the 60th ci. 
4) Sum the slope between the satellite ci values at the 

beginning of the hour and the next hour. 

In Fig. 5, the ci patch (left) at 12 pm and 4 pm were 
classified as Class I and Class III, respectively. The modeled 
ci, converted to GHI, is shown on the right. The Class I 
modeled irradiance at 12 pm has less variability than the 
Class III modeled irradiance at 4 pm. 

B. Synthesizing Classes IV-V 

Classes IV and V are modeled on the basis that the cloud 
cover in the sky, and the resulting ci classification, can be 
characterized as a system undergoing transitions between 
states. The states represent different opacities of cloud cover 
and the transition probabilities represent cloud movement 
over the area. Class IV is modeled as a system with the 
probability of transitioning between six ci states: 0.01 – 
0.03, 0.31 – 0.45, 0.46 – 0.6, 0.61 – 0.75, 0.76 – 0.9, 
and 0.91 – 1.1. The probability of the state is determined 
by the distance-weighted [17] proportion of the ci values 
from surrounding sites in that ci state. The state duration is 
determined by a random draw from a distribution of state 
durations, which were derived through empirical analysis of 
state durations in measured data. In Fig. 5 at 3 pm, the ci 
patch is classified as Class IV, yet the modeled irradiance 
is very smooth, because the distance-weighted sites are all 
roughly the same ci. This means that, while the patch was 
classified as a highly variable temporal class, the actual 
ci data generated irradiance data consistent with the patch 
characteristics. 

Class V is a simpler system, consisting of just two states: 
clear (ci > 0.9) and cloudy (ci < 0.75). The cloudy, 
clear state ci value is determined by finding the distance-
weighted mean of ci values, such that ci < 0.9, ci > 0.9, 
respectively. The transition probability of moving from a 
clear to a cloudy state is determined by the distance-weighted 
proportion of sites that are cloudy compared to the total 
number of distance-weighted sites. The transition probability 
of returning to a clear state is determined by drawing 
a random cloudy state duration from empirical analysis, 
similar to Class IV. Fig.s 5 and 6 have multiple hours with 
ci patch classified as Class V. 

In Fig. 6 (SRRL, Golden) at 1 pm, the Class V algorithm 
resulted in modeled data that oscillates frequently between a 
clear sky condition and occasional cloudiness, with a µci ≈ 
800 W/m2. At the same time, in Fig. 5 (NWTC, Boulder), the 
Class V algorithm resulted in a near inversion, with the µci ≈ 
450 W/m2. The two locations share a substantial fraction of 
the spatial irradiance data, yet the statistics are dominated 
by the local conditions. In the Boulder case, at 1 pm, the 
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Fig. 5. Snapshot satellite ci (left) and temporal GHI (right) from the 
National Wind Technology Center at the National Renewable Energy 
Laboratory on August 22, 2005. Satellite ci patches represent the snapshot 
at the end of the hour. Measured (black circle) and modeled (right, green 
triangle) time series GHI, located at 39.911◦N, -105.235◦W, with a time 
step of one minute are shown on the right. The temporal variability class of 
the measured data (in black) and modeled data (in gray) are located above 
each time series plot. 

surrounding sites are mostly cloudy, while in Golden, the 
surrounding sites are still mostly clear. 

Sandia National Laboratory [18] conducted an indepen­
dent validation of the sub-hour algorithm described here and 
found that the modeled data could reasonably be used for 
the WWSIS II. Most of the validation sites showed that the 
modeled data agreed reasonably with the measured data. The 
modeled data showed significant disagreement with two sites 
that may have microclimate conditions. 
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IV.	 WESTERN WIND AND SOLAR INTEGRATION STUDY 
DATASET 

The WWSIS II dataset was designed to be incorporated 
into a security constrained unit commitment (SCUC) and 
security constrained economic dispatch (SCED) model. The 
unit commitment (UC) model optimizes, over the defined 
horizon, the units of generation committed to be “on” based 
on balancing generation and demand, while meeting reserve 
requirements and operational constraints of the generators 
and transmission system. The UC problem is typically solved 
multiple times at different scales – planning horizons of 

one or more years, day-ahead UC horizons of 24 hours 
plus some lookahead to take into account the state of the 
following day, and hour-ahead UC horizons of an hour or 
more with some lookahead. Economic dispatch is limited 
to the real time operation of the electric system; however, 
most UC models also perform a mock economic dispatch 
to calculate the cost of operating the generators (variable 
operation and maintenance and fuel costs). In the past, 
integration studies [2], [3] have modeled the effects of a high 
penetration of solar and wind generation on a system at a 
resolution of one hour, with some statistical analysis of sub-
hour variability. Recently, studies underway at the National 
Renewable Energy Laboratory, including the WWSIS II, 
Eastern Renewable Generation Integration Study, and the 
Demand Response and Storage Integration Study, are based 
on simulating the SCED at a resolution of five minutes, 
consistent with the shortest time step real time energy market 
in the United States. Thus, solar power production data 
needed to have at least a five minute resolution, coherence 
over a very large area (e.g. the western United States), and 
exhibit appropriate ramp distributions at individual sites and 
a reduction in variability as the solar power production data 
is aggregated. 

A. Solar Plant Characteristics 

Fig. 7 shows the locations and installed capacity of the 
solar power plants in the WWSIS II. The study footprint 
covers two time zones and 3,101,476 km2. The study mod­
eled both CSP with six hours of thermal energy storage 
and photovoltaic PV power plants. The PV plants were 
modeled in one of two ways: (i) utility-scale PV plants were 
modeled at locations with high resource quality and tied into 
the nearest bus location in the model, and (ii) rooftop PV 
plants were modeled in population centers as distributed PV. 
The characteristics of the modeled plants, including installed 
capacity and the total number of plants, are recorded in Table 
II. 

TABLE II
 
SUMMARY OF WWSIS SOLAR PLANTS
 

Solar Plants Total Capacity Range Tracking Storage 
[MW] Hours 

Rooftop PV 474 0.03 - 123 0% 
Utility PV 533 0.1 - 200 45% 

CSP 182 64 - 200 6 

The algorithm described in Section III is applied to each 
hour of snapshot ci patch data, to develop modeled data at 
each solar power plant sites, with a time step of one minute. 
The result is a time series of GHI values representative of a 
point source. Both utility-scale and rooftop PV is expected 
to show some reduction in variability if the footprint of 
the plant is greater than the shadow of intermittent clouds 
moving over the plant. Marcos et al. [9] compared the point 
source irradiance measurements and the power output from 
several PV plants in Spain and found that the PV plant 
acts like a low-pass filter. Below the cut-off frequency, the 
power of the higher frequency modes is lower. The cut-off 
frequency scales inversely with the footprint of the plant; 
some example values are given in Table III. 
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Fig. 7. Western Wind and Solar Integration Study sites for PV and CSP 
power generation. 

TABLE III
 
TEMPORAL FILTER PROPERTIES APPLIED TO UTILITY-SCALE PV PLANTS
 

WITH A PACKING DENSITY OF 38 MW/KM2 .
 

Plant Capacity Plant Footprint Cut-Off Freq. Filter Limit 
[MW] [km2] [Hz] [min] 

25 0.66 0.00252 6.6 
50 1.32 0.00178 9.4 
100 2.63 0.00126 13.3 
200 5.26 0.00089 18.7 
380 10.00 0.00065 25.8 

To convert irradiance to power output the power conver­
sion model needs several other data streams, including DNI 
and DFI, as well as meteorological data. The main concern 
with sub-hour irradiance is the conversion of GHI to DNI 
and DFI. It is common to see GHI values exceed clear sky 
conditions, due to scattering off of cloud edges. However, 
such scattered light would not appear in the DNI spectrum. 
The GHI is converted to DNI by first transferring GHI values 
greater than clear sky to linearly interpolated hourly satellite 
DFI, and then calculating the DNI using the zenith angle 
(ZA) of the sun, DNIt = (GHIt − DF It) ∗ cos ZAt, 
at each time t. The complete set of visible irradiance 
measurements is combined with linearly interpolated wind 
speed and temperature to form the input dataset for PV. For 
CSP, a complete set of psychrometric is needed in addition 
to the irradiance and wind speed values. The WWSIS II 
dataset uses the System Advisor Model [19] to convert solar 
irradiance into solar power output, using separate modules 
for PV and CSP modeling. 

B. Analysis of Sub-Hour Western Wind and Solar Integration 
Study Solar Data 

In Section I we enumerated several qualities of a sub-
hour solar power dataset that are essential for renewable in­
tegration studies: individual sites have a representative num­

ber, magnitude, and duration of solar power output ramps; 
aggregates of sites show a reduction in the relative ramp 
magnitude, duration, and frequency; the correlation of ramps 
across sites decreases with increasing distance or longer time 
periods; and individual sites have a representative capacity 
factor. Fig. 8 shows the power output from a single 200 MW 
PV plant in Southern Nevada, and the simultaneous power 
output from all solar plants in the Western Interconnect. 
In July 2020, the 95th and 99th percentile ramps for the 
single site in southern Nevada is 10.7 MW and 32.2 MW, 
respectively, while the 95th and 99th percentile ramps for 
the entire Western Interconnect is 638.7 MW, 990.7 MW, 
respectively. When those percentile are scaled relative to the 
installed capacity, the single site has a ramp equal to 5.35% 
and 16.1% of the installed capacity for the 95th and 99th 

percentile ramp, while the aggregated solar power output 
has a ramp equal to 1.1% and 1.8% of the installed capacity 
across the region. The reduction in variability is nearly an 
order of magnitude for the largest ramps (99th percentile). 
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Fig. 8. Solar power output from a single site in Southern Nevada and 
from all sites in the Western Interconnect, with installed capacity of 200 
MW and 57,000 MW, respectively. 

Plant-to-plant ramp correlations are performed on ci to 
remove the correlation of the diurnal cycle of the sun through 
sky. Fig. 9 shows the correlation coefficient for a group of 
sites in Arizona spanning inter-plant distances of 10 km to 
400 km. The correlation of five time scales of changes in ci 
are shown: 3 hours, 1 hour, 30 minutes, 10 minutes, and 1 
minute. We expect the correlation to decrease as the distance 
between the sites increases or the time scale of the ci ramp 
is decreased. In other words, we expect little correlation 
of solar power output over one minute between two sites; 
however, long-term weather phenomena, such as afternoon 
storm clouds, should show up as correlated events in the 
longer ci ramps. Fig. 9 was inspired by a similar analysis of 
measured data by Mills et al. [5] 

V. CONCLUSION 

High penetration renewable integration studies need solar 
power data at specific location with representative local 
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Fig. 9. Site-to-site correlation of clearness index ramps. Ramps are 
measured by the instantaneous change in ci over a the time, t. The data 

twere fit with c1 exp −d−b1/¯+ c2 exp −d−b2/t̄, where d is the distance 
between sites in kilometers. 

irradiance variability and appropriate spatial-temporal cor­
relations across all sites. We have related sequential point-
source sub-hour global horizontal irradiance (GHI) values to 
static, spatially distributed GHI values drawn from satellite 
images. We have developed and implemented an algorithm 
for generating coherent sub-hour datasets that span distances 
ranging from 10 km to 4,000 km. We demonstrate the 
modeled data at locations with measured data, as well as for 
a large-scale integration study with over a 1,000 solar power 
plant locations. We demonstrate two statistical measures of 
the WWSIS II dataset: comparison of the ci ramps at a single 
site versus across the entire study region, and coherence of 
GHI values across sites ranging from 6 to 400 km apart over 
time scales from one minute to three hours. 
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